Prevalence of resistance mechanisms against macrolides and lincosamides in methicillin-resistant coagulase-negative staphylococci in the Czech Republic and occurrence of an undefined mechanism of resistance to lincosamides
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
16048992
PubMed Central
PMC1196274
DOI
10.1128/aac.49.8.3586-3589.2005
PII: 49/8/3586
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální léková rezistence * genetika MeSH
- bakteriální proteiny genetika MeSH
- incidence MeSH
- koagulasa metabolismus MeSH
- lidé MeSH
- linkosamidy MeSH
- makrolidy farmakologie MeSH
- membránové transportní proteiny genetika MeSH
- mikrobiální testy citlivosti MeSH
- rezistence na methicilin * MeSH
- Staphylococcus klasifikace účinky léků enzymologie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- antibakteriální látky MeSH
- bakteriální proteiny MeSH
- koagulasa MeSH
- linkosamidy MeSH
- makrolidy MeSH
- membránové transportní proteiny MeSH
- msrA protein, Staphylococcus epidermidis MeSH Prohlížeč
High occurrence of the non-macrolide-lincosamide-streptogramin B resistance genes msrA (53%) and linA/linA' (30%) was found among 98 methicillin-resistant coagulase-negative staphylococci additionally resistant to macrolides and/or lincosamides. The gene msrA predominated in Staphylococcus haemolyticus (43 of 62 isolates). In Staphylococcus epidermidis, it was present in 7 of 27 isolates. A novel mechanism of resistance to lincosamides appears to be present in 10 genetically related isolates of S. haemolyticus in the absence of ermA, ermC, msrA, and linA/linA'.
Zobrazit více v PubMed
Almer, L. S., V. D. Shortridge, A. M. Nilius, J. M. Beyer, N. B. Soni, M. H. Bui, G. G. Stone, and R. K. Flamm. 2002. Antimicrobial susceptibility and molecular characterization of community-acquired methicillin-resistant Staphylococcus aureus. Diagn. Microbiol. Infect. Dis. 43:225-232. PubMed
Chung, M., H. de Lencastre, P. Matthews, A. Tomasz, I. Adamsson, M. Aires de Sousa, T. Camou, C. Cocuzza, A. Corso, I. Couto, A. Dominguez, M. Gniadkowski, R. Goering, A. Gomes, K. Kikuchi, A. Marchese, R. Mato, O. Melter, D. Oliveira, R. Palacio, R. Sa-Leao, I. Santos Sanches, J. H. Song, P. T. Tassios, and P. Villari. 2000. Molecular typing of methicillin-resistant Staphylococcus aureus by pulsed-field gel electrophoresis: comparison of results obtained in a multilaboratory effort using identical protocols and MRSA strains. Microb. Drug Resist. 6:189-198. PubMed
Devriese, L. A. 1980. Two new types of resistance to lincomycin in pathogenic staphylococci from animals. Ann. Microbiol. (Paris) 131B:261-266. PubMed
Eady, E. A., J. I. Ross, J. L. Tipper, C. E. Walters, J. H. Cove, and W. C. Noble. 1993. Distribution of genes encoding erythromycin ribosomal methylases and an erythromycin efflux pump in epidemiologically distinct groups of staphylococci. J. Antimicrob. Chemother. 31:211-217. PubMed
Ferreira, R. B., A. P. Nunes, V. M. Kokis, N. Krepsky, S. Fonseca Lde, C. Bastos Mdo, M. Giambiagi-deMarval, and K. R. Santos. 2002. Simultaneous detection of the mecA and ileS-2 genes in coagulase-negative staphylococci isolated from Brazilian hospitals by multiplex PCR. Diagn. Microbiol. Infect. Dis. 42:205-212. PubMed
Fiebelkorn, K. R., S. A. Crawford, M. L. McElmeel, and J. H. Jorgensen. 2003. Practical disk diffusion method for detection of inducible clindamycin resistance in Staphylococcus aureus and coagulase-negative staphylococci. J. Clin. Microbiol. 41:4740-4744. PubMed PMC
Froggatt, J. W., J. L. Johnston, D. W. Galetto, and G. L. Archer. 1989. Antimicrobial resistance in nosocomial isolates of Staphylococcus haemolyticus. Antimicrob Agents Chemother. 33:460-466. PubMed PMC
Hajek, V. 1976. Staphylococcus intermedius, a new species isolated from animals. Int. J. Syst. Bacteriol. 26:401-408.
Janosi, L., and E. Ban. 1982. Localisation of the gene(s) determining inducible type macrolide and streptogramin B resistance on the penicillinase plasmid of isolates of an epidemic Staphylococcus aureus strain, p. 918-919. In P. Periti and G. G. Grassi (ed.), Current chemotherapy and immunotherapy: proceedings of the 12th International Congress of Chemotherapy, vol. 2. American Society for Microbiology, Washington, D.C.
Jenssen, W. D., S. Thakker-Varia, D. T. Dubin, and M. P. Weinstein. 1987. Prevalence of macrolides-lincosamides-streptogramin B resistance and erm gene classes among clinical strains of staphylococci and streptococci. Antimicrob. Agents Chemother. 31:883-888. PubMed PMC
Leclercq, R., A. Brisson-Noel, J. Duval, and P. Courvalin. 1987. Phenotypic expression and genetic heterogeneity of lincosamide inactivation in Staphylococcus spp. Antimicrob. Agents Chemother. 31:1887-1891. PubMed PMC
Leclercq, R., C. Carlier, J. Duval, and P. Courvalin. 1985. Plasmid-mediated resistance to lincomycin by inactivation in Staphylococcus haemolyticus. Antimicrob. Agents Chemother. 28:421-424. PubMed PMC
Lim, J. A., A. R. Kwon, S. K. Kim, Y. Chong, K. Lee, and E. C. Choi. 2002. Prevalence of resistance to macrolide, lincosamide and streptogramin antibiotics in Gram-positive cocci isolated in a Korean hospital. J. Antimicrob. Chemother. 49:489-495. PubMed
Lina, G., A. Quaglia, M. E. Reverdy, R. Leclercq, F. Vandenesch, and J. Etienne. 1999. Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrob. Agents Chemother. 43:1062-1066. PubMed PMC
Malbruny, B., A. M. Werno, T. P. Anderson, D. R. Murdoch, and R. Leclercq. 2004. A new phenotype of resistance to lincosamide and streptogramin A-type antibiotics in Streptococcus agalactiae in New Zealand. J. Antimicrob. Chemother. 54:1040-1044. PubMed
Martineau, F., F. J. Picard, N. Lansac, C. Menard, P. H. Roy, M. Ouellette, and M. G. Bergeron. 2000. Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob. Agents Chemother. 44:231-238. PubMed PMC
Melter, O., M. Aires de Sousa, P. Urbaskova, V. Jakubu, H. Zemlickova, and H. de Lencastre. 2003. Update on the major clonal types of methicillin-resistant Staphylococcus aureus in the Czech Republic. J. Clin. Microbiol. 41:4998-5005. PubMed PMC
Miller, S. A., D. D. Dykes, and H. F. Polesky. 1988. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16:1215. PubMed PMC
National Committee for Clinical Laboratory Standards. 1995. Performance standards for antimicrobial disk susceptibility tests. National Committee for Clinical Laboratory Standards, Villanova Pa.
Ross, J. I., E. A. Eady, J. H. Cove, W. J. Cunliffe, S. Baumberg, and J. C. Wootton. 1990. Inducible erythromycin resistance in staphylococci is encoded by a member of the ATP-binding transport super-gene family. Mol. Microbiol. 4:1207-1214. PubMed
Schmitz, F. J., R. Sadurski, A. Kray, M. Boos, R. Geisel, K. Kohrer, J. Verhoef, and A. C. Fluit. 2000. Prevalence of macrolide-resistance genes in Staphylococcus aureus and Enterococcus faecium isolates from 24 European university hospitals. J. Antimicrob. Chemother. 45:891-894. PubMed
Singh, K. V., G. M. Weinstock, and B. E. Murray. 2002. An Enterococcus faecalis ABC homologue (Lsa) is required for the resistance of this species to clindamycin and quinupristin-dalfopristin. Antimicrob. Agents Chemother. 46:1845-1850. PubMed PMC
Spiliopoulou, I., E. Petinaki, P. Papandreou, and G. Dimitracopoulos. 2004. erm(C) is the predominant genetic determinant for the expression of resistance to macrolides among methicillin-resistant Staphylococcus aureus clinical isolates in Greece. J. Antimicrob. Chemother. 53:814-817. PubMed
Tenover, F. C., R. D. Arbeit, R. V. Goering, P. A. Mickelsen, B. E. Murray, D. H. Persing, and B. Swaminathan. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 33:2233-2239. PubMed PMC
Thakker-Varia, S., A. C. Ranzini, and D. T. Dubin. 1985. Ribosomal RNA methylation in Staphylococcus aureus and Escherichia coli: effect of the “MLS” (erythromycin resistance) methylase. Plasmid 14:152-161. PubMed
Tunckanat, F., and S. Arikan. 2000. Phenotypes of staphylococcal resistance to macrolides, lincosamides and streptogramin B (MLS) in a Turkish university hospital. Zentbl. Bakteriol. 289:827-833. PubMed
Weisblum, B., and V. Demohn. 1969. Erythromycin-inducible resistance in Staphylococcus aureus: survey of antibiotic classes involved. J. Bacteriol. 98:447-452. PubMed PMC
Mutasynthesis of lincomycin derivatives with activity against drug-resistant staphylococci