Larger phylogenetic distances in litter mixtures: lower microbial biomass and higher C/N ratios but equal mass loss
Language English Country England, Great Britain Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
25876845
PubMed Central
PMC4426623
DOI
10.1098/rspb.2015.0103
PII: rspb.2015.0103
Knihovny.cz E-resources
- Keywords
- complementarity versus resource concentration hypotheses, decomposer, litter degradation, niche, phylogenetic biodiversity ecosystem functioning, phylogenetic signal of functional traits,
- MeSH
- Invertebrates physiology MeSH
- Biodegradation, Environmental MeSH
- Biomass MeSH
- Nitrogen analysis MeSH
- Phylogeny MeSH
- Forests MeSH
- Plant Leaves chemistry classification MeSH
- Magnoliopsida classification physiology MeSH
- Microbiota physiology MeSH
- Soil chemistry MeSH
- Soil Microbiology * MeSH
- Trees classification physiology MeSH
- Carbon analysis MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- France MeSH
- Names of Substances
- Nitrogen MeSH
- Soil MeSH
- Carbon MeSH
Phylogenetic distances of coexisting species differ greatly within plant communities, but their consequences for decomposers and decomposition remain unknown. We hypothesized that large phylogenetic distance of leaf litter mixtures increases differences of their litter traits, which may, in turn, result in increased resource complementarity or decreased resource concentration for decomposers and hence increased or decreased chemical transformation and reduction of litter. We conducted a litter mixture experiment including 12 common temperate tree species (evolutionarily separated by up to 106 Myr), and sampled after seven months, at which average mass loss was more than 50%. We found no effect of increased phylogenetic distance on litter mass loss or on abundance and diversity of invertebrate decomposers. However, phylogenetic distance decreased microbial biomass and increased carbon/nitrogen (C/N) ratios of litter mixtures. Consistently, four litter traits showed (marginally) significant phylogenetic signal and in three of these traits increasing trait difference decreased microbial biomass and increased C/N. We suggest that phylogenetic proximity of litter favours microbial decomposers and chemical transformation of litter owing to a resource concentration effect. This leads to a new hypothesis: closely related plant species occurring in the same niche should promote and profit from increased nutrient availability.
See more in PubMed
Grandcolas P. 1998. Phylogenetic analysis and the study of community structure. Oikos 82, 397–400. (10.2307/3546983) DOI
Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. 2002. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505. (10.1146/annurev.ecolsys.33.010802.150448) DOI
Cavender-Bares J, Ackerly DD, Baum DA, Bazzaz FA. 2004. Phylogenetic overdispersion in Floridian oak communities. Am. Nat. 163, 823–843. (10.1086/386375) PubMed DOI
Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH. 2009. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE 4, e5695 (10.1371/journal.pone.0005695) PubMed DOI PMC
Srivastava DS, Cadotte MW, MacDonald AAM, Marushia RG, Mirotchnick N. 2012. Phylogenetic diversity and the functioning of ecosystems. Ecol. Lett. 15, 637–648. (10.1111/j.1461-0248.2012.01795.x) PubMed DOI
Cadotte MW, Dinnage R, Tilman D. 2012. Phylogenetic diversity promotes ecosystem stability. Ecology 93, S223–S233. (10.1890/11-0426.1) DOI
Loreau M, Hector A. 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76. (10.1038/35083573) PubMed DOI
Heemsbergen DA, Berg MP, Loreau M, van Hal JR, Faber JH, Verhoef HA. 2004. Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306, 1019–1020. (10.1126/science.1101865) PubMed DOI
Hättenschwiler S, Tiunov AV, Scheu S. 2005. Biodiversity and litter decomposition in terrestrial ecosystems. Ann. Rev. Ecol. Evol. Syst. 36, 191–218. (10.1146/annurev.ecolsys.36.112904.151932) DOI
Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hattenschwiler S. 2010. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380. (10.1016/j.tree.2010.01.010) PubMed DOI
Wardle DA, Nilsson MC, Zackrisson O, Gallet C. 2003. Determinants of litter mixing effects in a Swedish boreal forest. Soil Biol. Biochem. 35, 827–835. (10.1016/S0038-0717(03)00118-4) DOI
Meier CL, Bowman WD. 2008. Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proc. Natl Acad. Sci. USA 105, 19 780–19 785. (10.1073/pnas.0805600105) PubMed DOI PMC
Hoorens B, Coomes D, Aerts R. 2010. Neighbour identity hardly affects litter-mixture effects on decomposition rates of New Zealand forest species. Oecologia 162, 479–489. (10.1007/s00442-009-1454-2) PubMed DOI PMC
Vos VA, Ruijven J, Berg M, Peeters EHM, Berendse F. 2013. Leaf litter quality drives litter mixing effects through complementary resource use among detritivores. Oecologia 173, 269–280. (10.1007/s00442-012-2588-1) PubMed DOI
Martinson H, Schneider K, Gilbert J, Hines J, Hambäck P, Fagan W. 2008. Detritivory: stoichiometry of a neglected trophic level. Ecol. Res. 23, 487–491. (10.1007/s11284-008-0471-7) DOI
Hladyz S, Gessner MO, Giller PS, Pozo J, Woodward GUY. 2009. Resource quality and stoichiometric constraints on stream ecosystem functioning. Freshwater Biol. 54, 957–970. (10.1111/j.1365-2427.2008.02138.x) DOI
Fontaine C, Dajoz I, Meriguet J, Loreau M. 2005. Functional diversity of plant–pollinator interaction webs enhances the persistence of plant communities. PLoS Biol. 4, e0040001 (10.1371/journal.pbio.0040001) PubMed DOI PMC
Bardgett RD, Shine A. 1999. Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biol. Biochem. 31, 317–321. (10.1016/S0038-0717(98)00121-7) DOI
Hooper DU, et al. 2000. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks. BioScience 50, 1049–1061. (10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2) DOI
Mikola J, Bardgett RD, Hedlund K. (ed.). 2002. Biodiversity, ecosystem functioning and soil decomposer food webs. Oxford, UK: Oxford University Press.
Schädler M, Brandl R. 2005. Do invertebrate decomposers affect the disappearance rate of litter mixtures? Soil Biol. Biochem. 37, 329–337. (10.1016/j.soilbio.2004.07.042) DOI
Prinzing A, Reiffers R, Braakhekke WG, Hennekens SM, Tackenberg O, Ozinga WA, Schaminée JHJ, Van Groenendael JM. 2008. Less lineages—more trait variation: phylogenetically clustered plant communities are functionally more diverse. Ecol. Lett. 11, 809–819. (10.1111/j.1461-0248.2008.01189.x) PubMed DOI
Cornwell WK, et al. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071. (10.1111/j.1461-0248.2008.01219.x) PubMed DOI
Pérez-Harguindeguy N, Díaz S, Cornelissen JHC, Vendramini F, Cabido M, Castellanos A. 2000. Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 218, 21–30. (10.1023/A:1014981715532) DOI
Eiland F, Klamer M, Lind AM, Leth M, Bååth E. 2001. Influence of initial C/N ratio on chemical and microbial composition during long term composting of straw. Microbial Ecol. 41, 272–280. (10.1007/s002480000071) PubMed DOI
Root RB. 1973. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of Collards (Brassica oleracea). Ecol. Monogr. 43, 95–124. (10.2307/1942161) DOI
Yguel B, Bailey R, Tosh ND, Vialatte A, Vasseur C, Vitrac X, Jean F, Prinzing A. 2011. Phytophagy on phylogenetically isolated trees: why hosts should escape their relatives. Ecol. Lett. 14, 1117–1124. (10.1111/j.1461-0248.2011.01680.x) PubMed DOI
Winkler IS, Mitter C. 2008. The phylogenetic dimension of insect-plant interactions: a review of recent evidence. In Specialization, speciation and radiation: the evolutionary biology of herbivorous insects (ed. Tilmon KJ.), pp. 240–263. Berkeley, CA: University of California Press.
Menken SB, Boomsma JJ, Van Nieukerken EJ. 2010. Large-scale evolutionary patterns of host plant associations in the Lepidoptera. Evolution 64, 1098–1119. (10.1111/j.1558-5646.2009.00889.x) PubMed DOI
Ott D, Rall BC, Brose U. 2012. Climate change effects on macrofaunal litter decomposition: the interplay of temperature, body masses and stoichiometry. Phil. Trans. R. Soc. B 367, 3025–3032. (10.1098/rstb.2012.0240) PubMed DOI PMC
Freschet GT, Aerts R, Cornelissen JHC. 2012. Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis. J. Ecol. 100, 619–630. (10.1111/j.1365-2745.2011.01943.x) DOI
Cadisch G, Giller KE. 1997. Driven by nature: plant litter quality and decomposition. Wallingford, UK: CAB International.
Cornelissen JHC, Quested HM, Logtestijn RSP, Pérez-Harguindeguy N, Gwynn-Jones D, Díaz S, Callaghan TV, Press MC, Aerts R. 2006. Foliar pH as a new plant trait: can it explain variation in foliar chemistry and carbon cycling processes among subarctic plant species and types? Oecologia 147, 315–326. (10.1007/s00442-005-0269-z) PubMed DOI
Freschet GT, Aerts R, Cornelissen JHC. 2012. A plant economics spectrum of litter decomposability. Funct. Ecol. 26, 56–65. (10.1111/j.1365-2435.2011.01913.x) DOI
Makkonen M, Berg MP, van Logtestijn RSP, van Hal JR, Aerts R. 2012. Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory. Oikos 122, 987–997. (10.1111/j.1600-0706.2012.20750.x) DOI
Poorter H, Villar R. 1997. The fate of acquired carbon in plants: chemical composition and construction costs. In Plant resource allocation (eds Bazzaz FA, Grace J.), pp. 39–72. San Diego, CA: Academic Press.
Freschet GT, Cornelissen JHC, Van Logtestijn RSP, Aerts R. 2010. Evidence of the ‘plant economics spectrum’ in a subarctic flora. J. Ecol. 98, 362–373. (10.1111/j.1365-2745.2009.01615.x) DOI
Makkar HPS. 2003. Quantification of tannins in tree and shrub foliage: a laboratory manual. Dordrecht, The Netherlands: Kluwer Academic.
Cornelissen JHC, Cerabolini B, Castro-Díez P, Villar-Salvador P, Montserrat-Martí G, Puyravaud JP, Maestro M, Werger MJA, Aerts R. 2003. Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings? J. Veg. Sci. 14, 311–322. (10.1111/j.1654-1103.2003.tb02157.x) DOI
Hermant M, Hennion F, Bartish IV, Yguel B, Prinzing A. 2012. Disparate relatives: life histories vary more in genera occupying intermediate environments. Persp. Plant Ecol. Evol. Syst. 14, 283–301. (10.1016/j.ppees.2012.02.001) DOI
Durka W, Michalski SG. 2012. Daphne: a dated phylogeny of a large European flora for phylogenetically informed ecological analyses. Ecology 93, 2297 (10.1890/12-0743.1) DOI
Hättenschwiler S, Jørgensen HB. 2010. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. J. Ecol. 98, 754–763. (10.1111/j.1365-2745.2010.01671.x) DOI
Cornelissen JHC. 1996. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J. Ecol. 84, 573–582. (10.2307/2261479) DOI
Anderson JPE, Domsch KH. 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10, 215–221. (10.1016/0038-0717(78)90099-8) DOI
Scheu S. 1992. Automated measurement of the respiratory response of soil microcompartments: active microbial biomass in earthworm faeces. Soil Biol. Biochem. 24, 1113–1118. (10.1016/0038-0717(92)90061-2) DOI
Beck T, Joergensen RG, Kandeler E, Makeschin F, Nuss E, Oberholzer HR, Scheu S. 1997. An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biol. Biochem. 29, 1023–1032. (10.1016/S0038-0717(97)00030-8) DOI
Macfadyen A. 1961. Improved funnel-type extractors for soil arthropods. J. Anim. Ecol. 30, 171–184. (10.2307/2120) DOI
Rosenzweig ML. 1995. Species diversity in space and time. New York, NY: Cambridge University Press.
Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ. 2007. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18 123–18 128. (10.1073/pnas.0709069104) PubMed DOI PMC
Cadotte MW, Cardinale BJ, Oakley TH. 2008. Evolutionary history and the effect of biodiversity on plant productivity. Proc. Natl Acad. Sci. USA 105, 17 012–17 017. (10.1073/pnas.0805962105) PubMed DOI PMC
Neter J, Wasserman W, Kutner MH. 1985. Multicollinearity, influential observations, and other topics in regression analysis—II. In Applied statistical linear models (ed. Richard D.), pp. 390–393, 2nd edn Homewood, IL: Irwin, Inc.
Blomberg SP, Garland T, Ives AR. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745. (10.1111/j.0014-3820.2003.tb00285.x) PubMed DOI
Münkemüller T, Lavergne S, Bzeznik B, Dray S, Jombart T, Schiffers K, Thuiller W. 2012. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756. (10.1111/j.2041-210X.2012.00196.x) DOI
Kraft NJB, Ackerly DD. 2010. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecol. Monogr. 80, 401–422. (10.1890/09-1672.1) DOI
Ackerly D. 2009. Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. Proc. Natl Acad. Sci. USA 106(Suppl. 2), 19 699–19 706. (10.1073/pnas.0901635106) PubMed DOI PMC
Coq S, Souquet JM, Meudec E, Cheynier V, Hattenschwiler S. 2010. Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of French Guiana. Ecology 91, 2080–2091. (10.1890/09-1076.1) PubMed DOI
Gartner TB, Cardon ZG. 2004. Decomposition dynamics in mixed-species leaf litter. Oikos 104, 230–246. (10.1111/j.0030-1299.2004.12738.x) DOI
Hanson C, Allison S, Bradford M, Wallenstein M, Treseder K. 2008. Fungal taxa target different carbon sources in forest soil. Ecosystems 11, 1157–1167. (10.1007/s10021-008-9186-4) DOI
Quinn C, Wyant K, Wangeline A, Shulman J, Galeas M, Valdez J, Self J, Paschke M, Pilon-Smits E. 2011. Enhanced decomposition of selenium hyperaccumulator litter in a seleniferous habitat: evidence for specialist decomposers? Plant Soil 341, 51–61. (10.1007/s11104-010-0446-7) DOI
Ponge JF. 2000. Vertical distribution of Collembola (Hexapoda) and their food resources in organic horizons of beech forests. Biol. Fertil. Soils 32, 508–522. (10.1007/s003740000285) DOI
Murray PJ, Clegg CD, Crotty FV, de la Fuente Martinez N, Williams JK, Blackshaw RP. 2009. Dissipation of bacterially derived C and N through the micro- and macrofauna of a grassland soil. Soil Biol. Biochem. 41, 1146–1150. (10.1016/j.soilbio.2009.02.021) DOI
Wright IJ, et al. 2004. The worldwide leaf economics spectrum. Nature 428, 821–827. (10.1038/nature02403) PubMed DOI
Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW. 2009. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715. (10.1111/j.1461-0248.2009.01314.x) PubMed DOI