Larger phylogenetic distances in litter mixtures: lower microbial biomass and higher C/N ratios but equal mass loss

. 2015 May 07 ; 282 (1806) : 20150103.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25876845

Phylogenetic distances of coexisting species differ greatly within plant communities, but their consequences for decomposers and decomposition remain unknown. We hypothesized that large phylogenetic distance of leaf litter mixtures increases differences of their litter traits, which may, in turn, result in increased resource complementarity or decreased resource concentration for decomposers and hence increased or decreased chemical transformation and reduction of litter. We conducted a litter mixture experiment including 12 common temperate tree species (evolutionarily separated by up to 106 Myr), and sampled after seven months, at which average mass loss was more than 50%. We found no effect of increased phylogenetic distance on litter mass loss or on abundance and diversity of invertebrate decomposers. However, phylogenetic distance decreased microbial biomass and increased carbon/nitrogen (C/N) ratios of litter mixtures. Consistently, four litter traits showed (marginally) significant phylogenetic signal and in three of these traits increasing trait difference decreased microbial biomass and increased C/N. We suggest that phylogenetic proximity of litter favours microbial decomposers and chemical transformation of litter owing to a resource concentration effect. This leads to a new hypothesis: closely related plant species occurring in the same niche should promote and profit from increased nutrient availability.

Animal Ecology Department of Ecological Science VU University Amsterdam De Boelelaan 1085 1081 HV Amsterdam The Netherlands

Centre National de la Recherche Scientifique Campus de Beaulieu Université de Rennes 1 Bâtiment 14 A 35042 Rennes France

Department of Sustainable Soils and Grassland Systems Rothamsted Research North Wyke Okehampton Devon EX20 2SB UK

Institute of Botany Academy of Sciences of Czech Republic Pruhobice Zamek 1 25243 Czech Republic

J F Blumenbach Institute of Zoology and Anthropology Georg August University Göttingen Berliner Strasse 28 37073 Göttingen Germany

Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration College of Life and Environmental Sciences Hangzhou Normal University Hangzhou 310036 People's Republic of China Centre National de la Recherche Scientifique Campus de Beaulieu Université de Rennes 1 Bâtiment 14 A 35042 Rennes France State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing 100093 People's Republic of China

Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration College of Life and Environmental Sciences Hangzhou Normal University Hangzhou 310036 People's Republic of China State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing 100093 People's Republic of China

Systems Ecology Department of Ecological Science VU University Amsterdam De Boelelaan 1085 1081 HV Amsterdam The Netherlands

Zobrazit více v PubMed

Grandcolas P. 1998. Phylogenetic analysis and the study of community structure. Oikos 82, 397–400. (10.2307/3546983) DOI

Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. 2002. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505. (10.1146/annurev.ecolsys.33.010802.150448) DOI

Cavender-Bares J, Ackerly DD, Baum DA, Bazzaz FA. 2004. Phylogenetic overdispersion in Floridian oak communities. Am. Nat. 163, 823–843. (10.1086/386375) PubMed DOI

Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH. 2009. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE 4, e5695 (10.1371/journal.pone.0005695) PubMed DOI PMC

Srivastava DS, Cadotte MW, MacDonald AAM, Marushia RG, Mirotchnick N. 2012. Phylogenetic diversity and the functioning of ecosystems. Ecol. Lett. 15, 637–648. (10.1111/j.1461-0248.2012.01795.x) PubMed DOI

Cadotte MW, Dinnage R, Tilman D. 2012. Phylogenetic diversity promotes ecosystem stability. Ecology 93, S223–S233. (10.1890/11-0426.1) DOI

Loreau M, Hector A. 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76. (10.1038/35083573) PubMed DOI

Heemsbergen DA, Berg MP, Loreau M, van Hal JR, Faber JH, Verhoef HA. 2004. Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306, 1019–1020. (10.1126/science.1101865) PubMed DOI

Hättenschwiler S, Tiunov AV, Scheu S. 2005. Biodiversity and litter decomposition in terrestrial ecosystems. Ann. Rev. Ecol. Evol. Syst. 36, 191–218. (10.1146/annurev.ecolsys.36.112904.151932) DOI

Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hattenschwiler S. 2010. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380. (10.1016/j.tree.2010.01.010) PubMed DOI

Wardle DA, Nilsson MC, Zackrisson O, Gallet C. 2003. Determinants of litter mixing effects in a Swedish boreal forest. Soil Biol. Biochem. 35, 827–835. (10.1016/S0038-0717(03)00118-4) DOI

Meier CL, Bowman WD. 2008. Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proc. Natl Acad. Sci. USA 105, 19 780–19 785. (10.1073/pnas.0805600105) PubMed DOI PMC

Hoorens B, Coomes D, Aerts R. 2010. Neighbour identity hardly affects litter-mixture effects on decomposition rates of New Zealand forest species. Oecologia 162, 479–489. (10.1007/s00442-009-1454-2) PubMed DOI PMC

Vos VA, Ruijven J, Berg M, Peeters EHM, Berendse F. 2013. Leaf litter quality drives litter mixing effects through complementary resource use among detritivores. Oecologia 173, 269–280. (10.1007/s00442-012-2588-1) PubMed DOI

Martinson H, Schneider K, Gilbert J, Hines J, Hambäck P, Fagan W. 2008. Detritivory: stoichiometry of a neglected trophic level. Ecol. Res. 23, 487–491. (10.1007/s11284-008-0471-7) DOI

Hladyz S, Gessner MO, Giller PS, Pozo J, Woodward GUY. 2009. Resource quality and stoichiometric constraints on stream ecosystem functioning. Freshwater Biol. 54, 957–970. (10.1111/j.1365-2427.2008.02138.x) DOI

Fontaine C, Dajoz I, Meriguet J, Loreau M. 2005. Functional diversity of plant–pollinator interaction webs enhances the persistence of plant communities. PLoS Biol. 4, e0040001 (10.1371/journal.pbio.0040001) PubMed DOI PMC

Bardgett RD, Shine A. 1999. Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biol. Biochem. 31, 317–321. (10.1016/S0038-0717(98)00121-7) DOI

Hooper DU, et al. 2000. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks. BioScience 50, 1049–1061. (10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2) DOI

Mikola J, Bardgett RD, Hedlund K. (ed.). 2002. Biodiversity, ecosystem functioning and soil decomposer food webs. Oxford, UK: Oxford University Press.

Schädler M, Brandl R. 2005. Do invertebrate decomposers affect the disappearance rate of litter mixtures? Soil Biol. Biochem. 37, 329–337. (10.1016/j.soilbio.2004.07.042) DOI

Prinzing A, Reiffers R, Braakhekke WG, Hennekens SM, Tackenberg O, Ozinga WA, Schaminée JHJ, Van Groenendael JM. 2008. Less lineages—more trait variation: phylogenetically clustered plant communities are functionally more diverse. Ecol. Lett. 11, 809–819. (10.1111/j.1461-0248.2008.01189.x) PubMed DOI

Cornwell WK, et al. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071. (10.1111/j.1461-0248.2008.01219.x) PubMed DOI

Pérez-Harguindeguy N, Díaz S, Cornelissen JHC, Vendramini F, Cabido M, Castellanos A. 2000. Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 218, 21–30. (10.1023/A:1014981715532) DOI

Eiland F, Klamer M, Lind AM, Leth M, Bååth E. 2001. Influence of initial C/N ratio on chemical and microbial composition during long term composting of straw. Microbial Ecol. 41, 272–280. (10.1007/s002480000071) PubMed DOI

Root RB. 1973. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of Collards (Brassica oleracea). Ecol. Monogr. 43, 95–124. (10.2307/1942161) DOI

Yguel B, Bailey R, Tosh ND, Vialatte A, Vasseur C, Vitrac X, Jean F, Prinzing A. 2011. Phytophagy on phylogenetically isolated trees: why hosts should escape their relatives. Ecol. Lett. 14, 1117–1124. (10.1111/j.1461-0248.2011.01680.x) PubMed DOI

Winkler IS, Mitter C. 2008. The phylogenetic dimension of insect-plant interactions: a review of recent evidence. In Specialization, speciation and radiation: the evolutionary biology of herbivorous insects (ed. Tilmon KJ.), pp. 240–263. Berkeley, CA: University of California Press.

Menken SB, Boomsma JJ, Van Nieukerken EJ. 2010. Large-scale evolutionary patterns of host plant associations in the Lepidoptera. Evolution 64, 1098–1119. (10.1111/j.1558-5646.2009.00889.x) PubMed DOI

Ott D, Rall BC, Brose U. 2012. Climate change effects on macrofaunal litter decomposition: the interplay of temperature, body masses and stoichiometry. Phil. Trans. R. Soc. B 367, 3025–3032. (10.1098/rstb.2012.0240) PubMed DOI PMC

Freschet GT, Aerts R, Cornelissen JHC. 2012. Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis. J. Ecol. 100, 619–630. (10.1111/j.1365-2745.2011.01943.x) DOI

Cadisch G, Giller KE. 1997. Driven by nature: plant litter quality and decomposition. Wallingford, UK: CAB International.

Cornelissen JHC, Quested HM, Logtestijn RSP, Pérez-Harguindeguy N, Gwynn-Jones D, Díaz S, Callaghan TV, Press MC, Aerts R. 2006. Foliar pH as a new plant trait: can it explain variation in foliar chemistry and carbon cycling processes among subarctic plant species and types? Oecologia 147, 315–326. (10.1007/s00442-005-0269-z) PubMed DOI

Freschet GT, Aerts R, Cornelissen JHC. 2012. A plant economics spectrum of litter decomposability. Funct. Ecol. 26, 56–65. (10.1111/j.1365-2435.2011.01913.x) DOI

Makkonen M, Berg MP, van Logtestijn RSP, van Hal JR, Aerts R. 2012. Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory. Oikos 122, 987–997. (10.1111/j.1600-0706.2012.20750.x) DOI

Poorter H, Villar R. 1997. The fate of acquired carbon in plants: chemical composition and construction costs. In Plant resource allocation (eds Bazzaz FA, Grace J.), pp. 39–72. San Diego, CA: Academic Press.

Freschet GT, Cornelissen JHC, Van Logtestijn RSP, Aerts R. 2010. Evidence of the ‘plant economics spectrum’ in a subarctic flora. J. Ecol. 98, 362–373. (10.1111/j.1365-2745.2009.01615.x) DOI

Makkar HPS. 2003. Quantification of tannins in tree and shrub foliage: a laboratory manual. Dordrecht, The Netherlands: Kluwer Academic.

Cornelissen JHC, Cerabolini B, Castro-Díez P, Villar-Salvador P, Montserrat-Martí G, Puyravaud JP, Maestro M, Werger MJA, Aerts R. 2003. Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings? J. Veg. Sci. 14, 311–322. (10.1111/j.1654-1103.2003.tb02157.x) DOI

Hermant M, Hennion F, Bartish IV, Yguel B, Prinzing A. 2012. Disparate relatives: life histories vary more in genera occupying intermediate environments. Persp. Plant Ecol. Evol. Syst. 14, 283–301. (10.1016/j.ppees.2012.02.001) DOI

Durka W, Michalski SG. 2012. Daphne: a dated phylogeny of a large European flora for phylogenetically informed ecological analyses. Ecology 93, 2297 (10.1890/12-0743.1) DOI

Hättenschwiler S, Jørgensen HB. 2010. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. J. Ecol. 98, 754–763. (10.1111/j.1365-2745.2010.01671.x) DOI

Cornelissen JHC. 1996. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J. Ecol. 84, 573–582. (10.2307/2261479) DOI

Anderson JPE, Domsch KH. 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10, 215–221. (10.1016/0038-0717(78)90099-8) DOI

Scheu S. 1992. Automated measurement of the respiratory response of soil microcompartments: active microbial biomass in earthworm faeces. Soil Biol. Biochem. 24, 1113–1118. (10.1016/0038-0717(92)90061-2) DOI

Beck T, Joergensen RG, Kandeler E, Makeschin F, Nuss E, Oberholzer HR, Scheu S. 1997. An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biol. Biochem. 29, 1023–1032. (10.1016/S0038-0717(97)00030-8) DOI

Macfadyen A. 1961. Improved funnel-type extractors for soil arthropods. J. Anim. Ecol. 30, 171–184. (10.2307/2120) DOI

Rosenzweig ML. 1995. Species diversity in space and time. New York, NY: Cambridge University Press.

Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ. 2007. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18 123–18 128. (10.1073/pnas.0709069104) PubMed DOI PMC

Cadotte MW, Cardinale BJ, Oakley TH. 2008. Evolutionary history and the effect of biodiversity on plant productivity. Proc. Natl Acad. Sci. USA 105, 17 012–17 017. (10.1073/pnas.0805962105) PubMed DOI PMC

Neter J, Wasserman W, Kutner MH. 1985. Multicollinearity, influential observations, and other topics in regression analysis—II. In Applied statistical linear models (ed. Richard D.), pp. 390–393, 2nd edn Homewood, IL: Irwin, Inc.

Blomberg SP, Garland T, Ives AR. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745. (10.1111/j.0014-3820.2003.tb00285.x) PubMed DOI

Münkemüller T, Lavergne S, Bzeznik B, Dray S, Jombart T, Schiffers K, Thuiller W. 2012. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756. (10.1111/j.2041-210X.2012.00196.x) DOI

Kraft NJB, Ackerly DD. 2010. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecol. Monogr. 80, 401–422. (10.1890/09-1672.1) DOI

Ackerly D. 2009. Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. Proc. Natl Acad. Sci. USA 106(Suppl. 2), 19 699–19 706. (10.1073/pnas.0901635106) PubMed DOI PMC

Coq S, Souquet JM, Meudec E, Cheynier V, Hattenschwiler S. 2010. Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of French Guiana. Ecology 91, 2080–2091. (10.1890/09-1076.1) PubMed DOI

Gartner TB, Cardon ZG. 2004. Decomposition dynamics in mixed-species leaf litter. Oikos 104, 230–246. (10.1111/j.0030-1299.2004.12738.x) DOI

Hanson C, Allison S, Bradford M, Wallenstein M, Treseder K. 2008. Fungal taxa target different carbon sources in forest soil. Ecosystems 11, 1157–1167. (10.1007/s10021-008-9186-4) DOI

Quinn C, Wyant K, Wangeline A, Shulman J, Galeas M, Valdez J, Self J, Paschke M, Pilon-Smits E. 2011. Enhanced decomposition of selenium hyperaccumulator litter in a seleniferous habitat: evidence for specialist decomposers? Plant Soil 341, 51–61. (10.1007/s11104-010-0446-7) DOI

Ponge JF. 2000. Vertical distribution of Collembola (Hexapoda) and their food resources in organic horizons of beech forests. Biol. Fertil. Soils 32, 508–522. (10.1007/s003740000285) DOI

Murray PJ, Clegg CD, Crotty FV, de la Fuente Martinez N, Williams JK, Blackshaw RP. 2009. Dissipation of bacterially derived C and N through the micro- and macrofauna of a grassland soil. Soil Biol. Biochem. 41, 1146–1150. (10.1016/j.soilbio.2009.02.021) DOI

Wright IJ, et al. 2004. The worldwide leaf economics spectrum. Nature 428, 821–827. (10.1038/nature02403) PubMed DOI

Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW. 2009. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715. (10.1111/j.1461-0248.2009.01314.x) PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...