An optimized FAIRE procedure for low cell numbers in yeast
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29577419
PubMed Central
PMC6099244
DOI
10.1002/yea.3316
Knihovny.cz E-zdroje
- Klíčová slova
- HTS, NGS, Saccharomyces cerevisiae, chromatin-accessibility, epigenetics,
- MeSH
- chromatin chemie genetika metabolismus MeSH
- formaldehyd chemie MeSH
- genom fungální genetika MeSH
- počet buněk MeSH
- regulační oblasti nukleových kyselin MeSH
- reprodukovatelnost výsledků MeSH
- Saccharomyces cerevisiae genetika MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin MeSH
- formaldehyd MeSH
We report an optimized low-input FAIRE-seq (Formaldehyde-Assisted Isolation of Regulatory Elements-sequencing) procedure to assay chromatin accessibility from limited amounts of yeast cells. We demonstrate that the method performs well on as little as 4 mg of cells scraped directly from a few colonies. Sensitivity, specificity and reproducibility of the scaled-down method are comparable with those of regular, higher input amounts, and allow the use of 100-fold fewer cells than existing procedures. The method enables epigenetic analysis of chromatin structure without the need for cell multiplication of exponentially growing cells in liquid culture, thus opening the possibility of studying colony cell subpopulations, or those that can be isolated directly from environmental samples.
Department of Medical Genetics Oslo University Hospital and University of Oslo 0450 Oslo Norway
Faculty of Science Charles University BIOCEV 252 50 Vestec Czech Republic
Institute of Microbiology of the Czech Academy of Sciences BIOCEV 252 50 Vestec Czech Republic
Zobrazit více v PubMed
Auerbach, R. K. , Euskirchen, G. , Rozowsky, J. , Lamarre‐Vincent, N. , Moqtaderi, Z. , Lefrancois, P. , … Snyder, M. (2009). Mapping accessible chromatin regions using Sono‐Seq. Proceedings of the National Academy of Sciences USA, 106(35), 14926–14931. 10.1073/pnas.0905443106 PubMed DOI PMC
bcbio . (n.d.)https://github.com/chapmanb/bcbio-nextgen (accessed May 2017)
Berchowitz, L. E. , Hanlon, S. E. , Lieb, J. D. , & Copenhaver, G. P. (2009). A positive but complex association between meiotic double‐strand break hotspots and open chromatin in Saccharomyces cerevisiae. Genome Research, 19(12), 2245–2257. 10.1101/gr.096297.109 PubMed DOI PMC
Boyle, A. P. , Davis, S. , Shulha, H. P. , Meltzer, P. , Margulies, E. H. , Weng, Z. , … Crawford, G. E. (2008). High‐resolution mapping and characterization of open chromatin across the genome. Cell, 132(2), 311–322. 10.1016/j.cell.2007.12.014 PubMed DOI PMC
Brind'Amour, J. , Liu, S. , Hudson, M. , Chen, C. , Karimi, M. M. , & Lorincz, M. C. (2015). An ultra‐low‐input native ChIP‐seq protocol for genome‐wide profiling of rare cell populations. Nature Communications, 6, 6033 10.1038/ncomms7033 PubMed DOI
Buenrostro, J. D. , Giresi, P. G. , Zaba, L. C. , Chang, H. Y. , & Greenleaf, W. J. (2013). Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA‐binding proteins and nucleosome position. Nature Methods, 10(12), 1213–1218. 10.1038/nmeth.2688 PubMed DOI PMC
Connelly, C. F. , Wakefield, J. , & Akey, J. M. (2014). Evolution and genetic architecture of chromatin accessibility and function in yeast. PLoS Genetics, 10(7), e1004427 10.1371/journal.pgen.1004427 PubMed DOI PMC
FastQC . (n.d.)http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Accessed January 2017
Gaulton, K. J. , Nammo, T. , Pasquali, L. , Simon, J. M. , Giresi, P. G. , Fogarty, M. P. , … Ferrer, J. (2010). A map of open chromatin in human pancreatic islets. Nature Genetics, 42(3), 255–259. 10.1038/ng.530 PubMed DOI PMC
Gilfillan, G. D. , Hughes, T. , Sheng, Y. , Hjorthaug, H. S. , Straub, T. , Gervin, K. , … Lyle, R. (2012). Limitations and possibilities of low cell number ChIP‐seq. BMC Genomics, 13, 645 10.1186/1471-2164-13-645 PubMed DOI PMC
Giresi, P. G. , Kim, J. , McDaniell, R. M. , Iyer, V. R. , & Lieb, J. D. (2007). FAIRE (formaldehyde‐assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin. Genome Research, 17(6), 877–885. 10.1101/gr.5533506 PubMed DOI PMC
Hogan, G. J. , Lee, C. K. , & Lieb, J. D. (2006). Cell cycle‐specified fluctuation of nucleosome occupancy at gene promoters. PLoS Genetics, 2(9), e158 10.1371/journal.pgen.0020158 PubMed DOI PMC
IDR . (n.d.)https://sites.google.com/site/anshulkundaje/projects/idr (accessed May 2017).
Klis, F. M. , Mol, P. , Hellingwerf, K. , & Brul, S. (2002). Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiology Review, 26(3), 239–256. PubMed
Langmead, B. , & Salzberg, S. L. (2012). Fast gapped‐read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. 10.1038/nmeth.1923 PubMed DOI PMC
Li, H. , Handsaker, B. , Wysoker, A. , Fennell, T. , Ruan, J. , Homer, N. , … 1000 Genome Project Data Processing Subgroup (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078–2079. 10.1093/bioinformatics/btp352 PubMed DOI PMC
Li, Q. , Brown, J. , Huang, H. , & Bickel, P. (2011). Measuring reproducibility of high‐throughput experiments. Annals of Applied Statistics, 5(3), 28 10.1214/11-AOAS466 DOI
Nagy, P. L. , Cleary, M. L. , Brown, P. O. , & Lieb, J. D. (2003). Genomewide demarcation of RNA polymerase II transcription units revealed by physical fractionation of chromatin. Proceedings of the National Academy of Sciences USA, 100(11), 6364–6369. 10.1073/pnas.1131966100 PubMed DOI PMC
Quinlan, A. R. , & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics, 26(6), 841–842. btq033 [pii];10.1093/bioinformatics/btq033 PubMed DOI PMC
Robinson, J. T. , Thorvaldsdottir, H. , Winckler, W. , Guttman, M. , Lander, E. S. , Getz, G. , & Mesirov, J. P. (2011). Integrative genomics viewer. Nature Biotechnology, 29(1), 24–26. 10.1038/nbt.1754 PubMed DOI PMC
Schep, A. N. , Buenrostro, J. D. , Denny, S. K. , Schwartz, K. , Sherlock, G. , & Greenleaf, W. J. (2015). Structured nucleosome fingerprints enable high‐resolution mapping of chromatin architecture within regulatory regions. Genome Research, 25(11), 1757–1770. 10.1101/gr.192294.115 PubMed DOI PMC
Schones, D. E. , Cui, K. , Cuddapah, S. , Roh, T. Y. , Barski, A. , Wang, Z. , … Zhao, K. (2008). Dynamic regulation of nucleosome positioning in the human genome. Cell, 132(5), 887–898. 10.1016/j.cell.2008.02.022 PubMed DOI PMC
Simon, J. M. , Giresi, P. G. , Davis, I. J. , & Lieb, J. D. (2012). Using formaldehyde‐assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA. Nature Protocols, 7(2), 256–267. 10.1038/nprot.2011.444 PubMed DOI PMC
Simon, J. M. , Giresi, P. G. , Davis, I. J. , & Lieb, J. D. (2013). A detailed protocol for formaldehyde‐assisted isolation of regulatory elements (FAIRE). Current Protocols in Molecular Biology. Chapter 21, Units 21–26). 10.1002/0471142727.mb2126s102 PubMed DOI
Tarasov, A. , Vilella, A. J. , Cuppen, E. , Nijman, I. J. , & Prins, P. (2015). Sambamba: Fast processing of NGS alignment formats. Bioinformatics, 31(12), 2032–2034. 10.1093/bioinformatics/btv098 PubMed DOI PMC
Tsompana, M. , & Buck, M. J. (2014). Chromatin accessibility: A window into the genome. Epigenetics & Chromatin, 7(1), 33 10.1186/1756-8935-7-33 PubMed DOI PMC
Zhang, Y. , Liu, T. , Meyer, C. A. , Eeckhoute, J. , Johnson, D. S. , Bernstein, B. E. , … Liu, X. S. (2008). Model‐based analysis of ChIP‐Seq (MACS). Genome Biology, 9(9), R137 10.1186/gb-2008-9-9-r137 PubMed DOI PMC
Zhu, L. J. (2013). Integrative analysis of ChIP‐chip and ChIP‐seq dataset. Methods in Molecular Biology, 1067, 105–124. 10.1007/978-1-62703-607-8_8 PubMed DOI