MARVELD2 (DFNB49) mutations in the hearing impaired Central European Roma population--prevalence, clinical impact and the common origin

. 2015 ; 10 (4) : e0124232. [epub] 20150417

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu srovnávací studie, časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25885414

Grantová podpora
R01 DC012564 NIDCD NIH HHS - United States
DC011803 NIDCD NIH HHS - United States
R01 DC011803 NIDCD NIH HHS - United States
R01 DC011748 NIDCD NIH HHS - United States
R56 DC011803 NIDCD NIH HHS - United States

BACKGROUND: In the present study we aimed: 1) To establish the prevalence and clinical impact of DFNB49 mutations in deaf Roma from 2 Central European countries (Slovakia and Hungary), and 2) to analyze a possible common origin of the c.1331+2T>C mutation among Roma and Pakistani mutation carriers identified in the present and previous studies. METHODS: We sequenced 6 exons of the MARVELD2 gene in a group of 143 unrelated hearing impaired Slovak Roma patients. Simultaneously, we used RFLP to detect the c.1331+2T>C mutation in 85 Hungarian deaf Roma patients, control groups of 702 normal hearing Romanies from both countries and 375 hearing impaired Slovak Caucasians. We analyzed the haplotype using 21 SNPs spanning a 5.34Mb around the mutation c.1331+2T>C. RESULTS: One pathogenic mutation (c.1331+2T>C) was identified in 12 homozygous hearing impaired Roma patients. Allele frequency of this mutation was higher in Hungarian (10%) than in Slovak (3.85%) Roma patients. The identified common haplotype in Roma patients was defined by 18 SNP markers (3.89 Mb). Fourteen common SNPs were also shared among Pakistani and Roma homozygotes. Biallelic mutation carriers suffered from prelingual bilateral moderate to profound sensorineural hearing loss. CONCLUSIONS: We demonstrate different frequencies of the c.1331+2T>C mutation in hearing impaired Romanies from 3 Central European countries. In addition, our results provide support for the hypothesis of a possible common ancestor of the Slovak, Hungarian and Czech Roma as well as Pakistani deaf patients. Testing for the c.1331+2T>C mutation may be recommended in GJB2 negative Roma cases with early-onset sensorineural hearing loss.

Department of Medical Genetics University of Pécs Clinical Centre Pécs Hungary

Department of Medical Genetics University of Pécs Clinical Centre Pécs Hungary; Szentagothai Research Centre University of Pécs Pécs Hungary

Department of Molecular Biology Faculty of Natural Sciences Comenius University Bratislava Slovakia

Department of Molecular Biology Faculty of Natural Sciences Comenius University Bratislava Slovakia; Institute of Molecular Physiology and Genetics Slovak Academy of Sciences Bratislava Slovakia

Department of Otorhinolaryngology Head and Neck Surgery Faculty Hospital of J A Reiman Prešov Slovakia

Department of Otorhinolaryngology Head and Neck Surgery Faculty of Medicine and University Hospital Comenius University Bratislava Slovakia

Department of Otorhinolaryngology Head and Neck Surgery School of Medicine University of Maryland Baltimore Maryland United States of America

DNA Laboratory Department of Paediatric Neurology Charles University 2nd Medical School and University Hospital Motol Prague Czech Republic

Laboratory of Diabetes and Metabolic Disorders and DIABGENE Institute of Experimental Endocrinology Slovak Academy of Sciences Bratislava Slovakia

Laboratory of Diabetes and Metabolic Disorders and DIABGENE Institute of Experimental Endocrinology Slovak Academy of Sciences Bratislava Slovakia; Center for Molecular Medicine Slovak Academy of Sciences Bratislava Slovakia

Laboratory of Diabetes and Metabolic Disorders and DIABGENE Institute of Experimental Endocrinology Slovak Academy of Sciences Bratislava Slovakia; Department of Otorhinolaryngology Head and Neck Surgery Faculty of Medicine and University Hospital Comenius University Bratislava Slovakia

Zobrazit více v PubMed

Schrijver. I Hereditary non-syndromic sensorineural hearing loss: transforming silence to sound. J Mol Diagn. 2004;6:275–84. PubMed PMC

Van Camp G, Smith RJ. Hereditary hearing loss homepage. Accessed 10 Sept 2014. Available: http://hereditaryhearingloss.org/

Ramzan K, Shaikh RS, Ahmad J, Khan SN, Riazuddin S, Ahmed ZM, et al. A new locus for nonsyndromic deafness DFNB49 maps to chromosome 5q12.3-q14.1. Hum Genet. 2005;116:17–22. PubMed

Riazuddin S, Ahmed ZM, Fanning AS, Lagziel A, Kitajiri S, Ramzan K, et al. Tricellulin is a tight-junction protein necessary for hearing. Am J Hum Genet. 2006;79:1040–51. PubMed PMC

Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S. Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol. 2005;171:939–45. PubMed PMC

Mariano C, Silva SL, Pereira P, Fernandes A, Brites D, Brito MA. Evidence of tricellulin expression by immune cells, particularly microglia. Biochem Biophys Res Commun. 2011;409:799–802. 10.1016/j.bbrc.2011.05.093 PubMed DOI

Chishti MS, Bhatti A, Tamim S, Lee K, McDonald ML, Leal SM, et al. Splice-site mutations in the TRIC gene underlie autosomal recessive nonsyndromic hearing impairment in Pakistani families. J Hum Genet. 2008;53:101–5. PubMed PMC

Nayak G, Lee SI, Yousaf R, Edelmann SE, Trincot C, Van Itallie CM, et al. Tricellulin deficiency affects tight junction architecture and cochlear hair cells. J Clin Invest. 2013;123:4036–49. 10.1172/JCI69031 PubMed DOI PMC

Babanejad M, Fattahi Z, Bazazzadegan N, Nishimura C, Meyer N, Nikzat N, et al. A comprehensive study to determine heterogeneity of autosomal recessive nonsyndromic hearing loss in Iran. Am J Med Genet Part A. 2012;158A: 2485–92. 10.1002/ajmg.a.35572 PubMed DOI

Šafka Brožková D, Laštůvková J, Štěpánková H, Krůtová M, Trková M, Myška P, et al. DFNB49 is an important cause of non-syndromic deafness in Czech Roma patients but not in the general Czech population. Clin Genet. 2012;82:579–82. 10.1111/j.1399-0004.2011.01817.x PubMed DOI

Fraser AM. The gypsies: The Peoples of Europe 2nd ed. Oxford, UK & Cambridge, USA: Blackwell; 1995.

Moorjani P, Patterson N, Loh PR, Lipson M, Kisfali P, Melegh BI, et al. Reconstructing Roma history from genome-wide data. PLoS One. 2013;8:e58633 10.1371/journal.pone.0058633 PubMed DOI PMC

Mendizabal I, Lao O, Marigorta UM, Wollstein A, Gusmão L, Ferak V, et al. Reconstructing the population history of European Romani from genome-wide data. Curr Biol. 2012;22:2342–9. 10.1016/j.cub.2012.10.039 PubMed DOI

Kalaydjieva L, Gresham D, Calafell F. Genetic studies of the Roma (Gypsies): a review. BMC Med Genet. 2001;2:5 PubMed PMC

Ferak V, Sivakova D, Sieglova Z. [The Slovak gypsies (Romany)—a population with the highest coefficient of inbreeding in Europe]. Bratisl Lek Listy. 1987;87:168–75. PubMed

Plásilová M, Stoilov I, Sarfarazi M, Kádasi L, Feráková E, Ferák V. Identification of a single ancestral CYP1B1 mutation in Slovak Gypsies (Roms) affected with primary congenital glaucoma. J Med Genet. 1999;36:290–4. PubMed PMC

Gencik A. Epidemiology and genetics of primary congenital glaucoma in Slovakia. Description of a form of primary congenital glaucoma in gypsies with autosomal-recessive inheritance and complete penetrance. Dev Ophthalmol. 1989;16:76–115. PubMed

Plásilová M, Feráková E, Kádasi L, Poláková H, Gerinec A, Ott J. et al. Linkage of autosomal recessive primary congenital glaucoma to the GLC3A locus in Roms (Gypsies) from Slovakia. Hum Hered. 1998;48:30–3. PubMed

Kalanin J, Takarada Y, Kagawa S, Yamashita K, Ohtsuka N, Matsuoka A. Gypsy phenylketonuria: a point mutation of the phenylalanine hydroxylase gene in Gypsy families from Slovakia. Am J Med Genet. 1994;49:235–9. PubMed

Bôžiková A, Gabriková D, Sovičová A, Behulová R, Mačeková S, Boroňová I, et al. The frequency of factor V Leiden and prothrombin G20210A mutations in Slovak and Roma (Gypsy) ethnic group of Eastern Slovakia. J Thromb Thrombolysis. 2012;34:406–9. PubMed

Gabriková D, Bernasovská J, Mačeková S, Bôžiková A, Bernasovský I, Bališinová A, et al. Unique frequencies of HFE gene variants in Roma/Gypsies. J Appl Genet. 2012;53:183–7. 10.1007/s13353-012-0088-y PubMed DOI

Schwabova J, Brozkova DS, Petrak B, Mojzisova M, Pavlickova K, Haberlova J, et al. Homozygous EXOSC3 mutation c.92G—>C, p.G31A is a founder mutation causing severe pontocerebellar hypoplasia type 1 among the Czech Roma. J Neurogenet. 2013;27:163–9. 10.3109/01677063.2013.814651 PubMed DOI

Baránková L, Sisková D, Hühne K, Vyhnálková E, Sakmaryová I, Bojar M, et al. A 71-nucleotide deletion in the periaxin gene in a Romani patient with early-onset slowly progressive demyelinating CMT. Eur J Neurol. 2008;15:548–51. 10.1111/j.1468-1331.2008.02104.x PubMed DOI

Melegh B, Bene J, Mogyorósy G, Havasi V, Komlósi K, Pajor L, et al. Phenotypic manifestations of the OCTN2 V295X mutation: sudden infant death and carnitine-responsive cardiomyopathy in Roma families. Am J Med Genet A. 2004;131:121–6. PubMed

Hunter M, Heyer E, Austerlitz F, Angelicheva D, Nedkova V, Briones P, et al. The P28T mutation in the GALK1 gene accounts for galactokinase deficiency in Roma (Gypsy) patients across Europe. Pediatr Res. 2002;51:602–6. PubMed

Minárik G, Ferák V, Feráková E, Ficek A, Poláková H, Kádasi L. High frequency of GJB2 mutation W24X among Slovak Romany (Gypsy) patients with non-syndromic hearing loss (NSHL). Gen Physiol Biophys. 2003;22:549–56. PubMed

Seeman P, Malíková M, Rasková D, Bendová O, Groh D, Kubálková M, et al. Spectrum and frequencies of mutations in the GJB2 (Cx26) gene among 156 Czech patients with pre-lingual deafness. Clin Genet. 2004;66:152–7. PubMed

Alvarez A, del Castillo I, Villamar M, Aguirre LA, González-Neira A, López-Nevot A, et al. High prevalence of the W24X mutation in the gene encoding connexin-26 (GJB2) in Spanish Romani (gypsies) with autosomal recessive non-syndromic hearing loss. Am J Med Genet A. 2005;137A:255–8. PubMed

Bouwer S, Angelicheva D, Chandler D, Seeman P, Tournev I, Kalaydjieva L. Carrier rates of the ancestral Indian W24X mutation in GJB2 in the general Gypsy population and individual subisolates. Genet Test. 2007;11:455–8. 10.1089/gte.2007.0048 PubMed DOI

Riazuddin S, Belyantseva IA, Giese AP, Lee K, Indzhykulian AA, Nandamuri SP, et al. Alterations of the CIB2 calcium- and integrin-binding protein cause Usher syndrome type 1J and nonsyndromic deafness DFNB48. Nat Genet. 2012;44:1265–71. 10.1038/ng.2426 PubMed DOI PMC

Kabatova Z, Profant M. [Deafness and cochlear implantation]. Via pract. 2007;4:76–8.

National Institute of Deafness and other Communication Disorders. Accessed 20 May 2014. Available: www.nidcd.nih.gov/health/statistics/Pages/quick.aspx

Musinka A, Skobla D, Hurrle J, Matlovicova K, Kling J. Atlas of Roma communities in Slovakia 2013 Bratislava: UNDP, 2014.

Hungarian Central Statistical Office. Census 2011. Accessed 02 Dec. 2014. Available: http://www.ksh.hu/interaktiv/terkepek/mo/nemz_eng.html

Koupilová I, Epstein H, Holcík J, Hajioff S, McKee M. Health needs of the Roma population in the Czech and Slovak Republics. Soc Sci Med. 2001;53:1191–204. PubMed

Lassuthova P, Sišková D, Haberlová J, Sakmaryová I, Filouš A, Seeman P. Congenital cataract, facial dysmorphism and demyelinating neuropathy (CCFDN) in 10 Czech gypsy children—frequent and underestimated cause of disability among Czech gypsies. Orphanet J Rare Dis. 2014;9:46 10.1186/1750-1172-9-46 PubMed DOI PMC

Juhász E1, Béres J, Kanizsai S, Nagy K. The Consequence of a Founder Effect: CCR5-32, CCR2-64I and SDF1-3'A Polymorphism in Vlach Gypsy Population in Hungary. Pathol Oncol Res. 2012;18:177–82. 10.1007/s12253-011-9425-4 PubMed DOI

Sharp JD, Wheeler RB, Parker KA, Gardiner RM, Williams RE, Mole SE. Spectrum of CLN6 mutations in variant late infantile neuronal ceroid lipofuscinosis. Hum Mutat. 2003;22:35–42. PubMed

Morar B, Gresham D, Angelicheva D, Tournev I, Gooding R, Guergueltcheva V, et al. Mutation history of the roma/gypsies. Am J Hum Genet. 2004;75:596–609. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...