Tumor-Stroma-Interaktionen im Harnblasenkarzinom
[Tumour-stroma interactions in urothelial cancer]

. 2015 Apr ; 54 (4) : 516-25.

Jazyk němčina Země Německo Médium print

Typ dokumentu anglický abstrakt, časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid25895564

BACKGROUND: The histopathological structure of malignant tumours involves two essential compartments - the tumour parenchyma with the actual transformed cells, and the supportive tumour stroma. The latter consists of specialized mesenchymal cells, such as fibroblasts, macrophages, lymphocytes and vascular cells, as well as of their secreted products, including components of the extracellular matrix, matrix modifying enzymes and numerous regulatory growth factors and cytokines. In consequence, the tumour stroma has the ability to influence virtually all aspects of tumour development and progression, including therapeutic response. AIM: In this article we review the current knowledge of tumor stroma interactions in urothelial carcinoma and present various experimental systems that are currently in use to unravel the biological basis of these heterotypic cell interactions. RESULTS: For urothelial carcinoma, an extensive tumour stroma is quite typical and markers of activated fibroblasts correlate significantly with clinical parameters of advanced disease. Another clinically important variable is provided by the stromal expression of syndecan-1. CONCLUSION: Integration of markers of activated stroma into clinical risk evaluation could aid to better stratification of urothelial bladder carcinoma patients. Elucidation of biological mechanisms underlying tumour-stroma interactions could provide new therapeutical targets.

Zobrazit více v PubMed

Semin Cancer Biol. 2014 Apr;25:61-8 PubMed

Eur J Cancer. 2004 Jun;40(9):1373-82 PubMed

PLoS Biol. 2004 Feb;2(2):E7 PubMed

J Clin Oncol. 2000 Aug;18(16):2963-71 PubMed

Histochem Cell Biol. 2012 Dec;138(6):847-60 PubMed

Semin Cell Dev Biol. 2010 Feb;21(1):2-10 PubMed

PLoS One. 2013 May 24;8(5):e64181 PubMed

Pathologe. 1998 May;19(3):187-93 PubMed

Nature. 2013 Sep 19;501(7467):346-54 PubMed

Rom J Morphol Embryol. 2009;50(4):639-43 PubMed

Nat Rev Cancer. 2006 May;6(5):392-401 PubMed

Genes Dev. 2011 Dec 1;25(23):2465-79 PubMed

Mol Cancer Res. 2012 Aug;10(8):995-1009 PubMed

Cancer. 2003 Nov 1;98(9):1830-6 PubMed

Cancer Cell. 2010 Feb 17;17(2):135-47 PubMed

Cell Oncol (Dordr). 2013 Apr;36(2):95-112 PubMed

Cancer Biomark. 2011-2012;10(2):109-16 PubMed

Cell. 2011 Mar 4;144(5):646-74 PubMed

Urology. 2007 Apr;69(4):780-4 PubMed

Nature. 2012 Jul 26;487(7408):500-4 PubMed

Ups J Med Sci. 2012 May;117(2):187-95 PubMed

Urologe A. 2007 Sep;46(9):1197-202 PubMed

Anticancer Res. 2003 Jul-Aug;23(4):3119-28 PubMed

BJU Int. 2009 Dec;104(11):1774-9 PubMed

Neoplasma. 2012;59(6):728-36 PubMed

N Engl J Med. 1986 Dec 25;315(26):1650-9 PubMed

Hum Pathol. 2014 Apr;45(4):674-82 PubMed

Cancer Cell. 2013 Mar 18;23(3):277-86 PubMed

Exp Cell Res. 2015 Jul 1;335(1):1-11 PubMed

Curr Opin Genet Dev. 2005 Feb;15(1):97-101 PubMed

J Cancer Res Clin Oncol. 2011 May;137(5):751-9 PubMed

Science. 2004 Feb 6;303(5659):848-51 PubMed

BMC Urol. 2012 Jun 13;12:18 PubMed

Stem Cells. 2009 Jul;27(7):1487-95 PubMed

Exp Cell Res. 2010 May 1;316(8):1324-31 PubMed

Folia Histochem Cytobiol. 2009;47(4):579-85 PubMed

Nat Med. 2012 Sep;18(9):1359-68 PubMed

J Natl Cancer Inst. 2012 Sep 5;104(17):1320-34 PubMed

Cancer Res. 2004 Mar 1;64(5):1744-50 PubMed

Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):11103-8 PubMed

J Thorac Oncol. 2011 Jan;6(1):209-17 PubMed

Cell Adh Migr. 2012 May-Jun;6(3):231-5 PubMed

Nature. 2011 Apr 7;472(7341):110-4 PubMed

Nat Rev Immunol. 2010 Aug;10(8):554-67 PubMed

Urology. 2012 Mar;79(3):638-43 PubMed

Eur Urol. 2009 Sep;56(3):427-9 PubMed

Curr Opin Genet Dev. 2009 Feb;19(1):67-73 PubMed

Cancer Cell. 2012 Mar 20;21(3):309-22 PubMed

J Natl Cancer Inst. 2014 Feb;106(2):djt369 PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...