Phylogeography and evolutionary history of the Crocidura olivieri complex (Mammalia, Soricomorpha): from a forest origin to broad ecological expansion across Africa
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
25900417
PubMed Central
PMC4422046
DOI
10.1186/s12862-015-0344-y
PII: 10.1186/s12862-015-0344-y
Knihovny.cz E-resources
- MeSH
- Bayes Theorem MeSH
- Biological Evolution MeSH
- Ecology MeSH
- Ecosystem MeSH
- Phylogeny MeSH
- Phylogeography * MeSH
- Genetic Variation MeSH
- Genetic Drift MeSH
- Forests MeSH
- Shrews classification genetics MeSH
- Genetic Speciation MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Africa MeSH
BACKGROUND: This study aims to reconstruct the evolutionary history of African shrews referred to the Crocidura olivieri complex. We tested the respective role of forest retraction/expansion during the Pleistocene, rivers (allopatric models), ecological gradients (parapatric model) and anthropogenic factors in explaining the distribution and diversification within this species complex. We sequenced three mitochondrial and four nuclear markers from 565 specimens encompassing the known distribution of the complex, i.e. from Morocco to Egypt and south to Mozambique. We used Bayesian phylogenetic inference, genetic structure analyses and divergence time estimates to assess the phylogenetic relationships and evolutionary history of these animals. RESULTS: The C. olivieri complex (currently composed of C. olivieri, C. fulvastra, C. viaria and C. goliath) can be segregated into eight principal geographical clades, most exhibiting parapatric distributions. A decrease in genetic diversity was observed between central and western African clades and a marked signal of population expansion was detected for a broadly distributed clade occurring across central and eastern Africa and portions of Egypt (clade IV). The main cladogenesis events occurred within the complex between 1.37 and 0.48 Ma. Crocidura olivieri sensu stricto appears polyphyletic and C. viaria and C. fulvastra were not found to be monophyletic. CONCLUSIONS: Climatic oscillations over the Pleistocene probably played a major role in shaping the genetic diversity within this species complex. Different factors can explain their diversification, including Pleistocene forest refuges, riverine barriers and differentiation along environmental gradients. The earliest postulated members of the complex originated in central/eastern Africa and the first radiations took place in rain forests of the Congo Basin. A dramatic shift in the ecological requirements in early members of the complex, in association with changing environments, took place sometime after 1.13 Ma. Some lineages then colonized a substantial portion of the African continent, including a variety of savannah and forest habitats. The low genetic divergence of certain populations, some in isolated localities, can be explained by their synanthropic habits. This study underlines the need to revise the taxonomy of the C. olivieri complex.
Association Vahatra BP 3972 Antananarivo 101 Madagascar
College of Professional Studies Roosevelt University 430 S Michigan Avenue Chicago IL 60605 USA
Field Museum of Natural History 1400 South Lake Shore Drive Chicago IL 60605 USA
Génoscope Centre National de Séquençage 2 rue Gaston Crémieux CP5706 91057 Evry Cedex France
Université de Rennes 1 CNRS UMR 6553 Ecobio Station Biologique 35380 Paimpont France
Zoologisches Forschungmuseum Alexander Koenig Adenauerallee 160 D 53113 Bonn Germany
See more in PubMed
Maley J. African rain forest ecology and conservation. An interdisciplinary perspective. In: Weber W, White L, Vedder A, Naughton-Treves L, editors. The impact of arid phases on the African rain forest through geological history. New Haven: Yale University Press; 2001. pp. 68–87.
deMenocal PB. African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Planet Sci Lett. 2004;220:3–24. doi: 10.1016/S0012-821X(04)00003-2. DOI
Arctander P, Johansen C, Coutellec-Vreto MA. Phylogeography of three closely related African bovids (tribe Alcelaphini) Mol Biol Evol. 1999;16:1724–39. doi: 10.1093/oxfordjournals.molbev.a026085. PubMed DOI
Dubach JM, Patterson BD, Briggs MB, Venzke K, Flammand J, Stander P, et al. Molecular genetic variation across the southern and eastern geographic ranges of the African lion, Panthera leo. Conserv Genet. 2005;7:15–24. doi: 10.1007/s10592-004-7729-6. DOI
Anthony NM, Johnson-Bawe M, Jeffery K, Clifford SL, Abernethy KA, Tutin CE, et al. The role of Pleistocene refugia and rivers in shaping gorilla genetic diversity in Central Africa. Proc Natl Acad Sci U S A. 2007;104:20432–6. doi: 10.1073/pnas.0704816105. PubMed DOI PMC
Nicolas V, Mboumba JF, Verheyen E, Denys C, Lecompte E, Olayemi A, et al. Phylogeographical structure and regional history of Lemniscomys striatus (Rodentia: Muridae) in tropical Africa. J Biogeogr. 2008;35:2072–89. doi: 10.1111/j.1365-2699.2008.01950.x. DOI
Olayemi A, Nicolas V, Hulselmans J, Missoup AD, Fichet-Calvet E, Amundala D, et al. Taxonomy of the African giant pouched rats (Nesomyidae: Cricetomys): molecular and craniometric evidence support an unexpected high species diversity. Zool J Linn Soc. 2012;165:700–19. doi: 10.1111/j.1096-3642.2012.00823.x. DOI
Colangelo P, Verheyen E, Leirs H, Tatard C, Denys C, Dobigny G, et al. A mitochondrial phylogeographic scenario for the most widespread African rodent, Mastomys natalensis. Biol J Linn Soc. 2013;108:901–16. doi: 10.1111/bij.12013. DOI
Jacquet F, Nicolas V, Colyn M, Kadjo B, Hutterer R, Akpatou B, et al. Forest refugia and riverine barriers promote diversification in the West African pygmy shrew (Crocidura obscurior complex, Soricomorpha) Zool Scr. 2013;43:131–48. doi: 10.1111/zsc.12039. DOI
Wójcik JM, Wolsan M. Evolution of shrews. Bialowieza: Mammal Research Institute, Polish Academiy of Sciences; 1998.
Dubey S, Antonin M, Denys C, Vogel P. Use of phylogeny to resolve the taxonomy of the widespread and highly polymorphic African giant shrews (Crocidura olivieri group, Crocidurinae, Mammalia) Zool. 2007;110:48–57. doi: 10.1016/j.zool.2006.05.003. PubMed DOI
Churchfield S, Hutterer R. Crocidura olivieri, African Giant Shrew. In: Happold M, Happold DCD, editors. Mammals of Africa. London: Bloomsbury Publishing; 2013. pp. 118–9.
Gascon C, Malcolm JR, Patton JL, da Silva MNF, Bogart JP, Lougheed SC, et al. Riverine barriers and the geographic distribution of Amazonian species. Proc Natl Acad Sci U S A. 2000;97:13672–7. doi: 10.1073/pnas.230136397. PubMed DOI PMC
Katuala PGB, Kennis J, Nicolas V, Wendelen W, Huselmans J, Verheyen E, et al. The presence of Praomys, Lophuromys, and Deomys species (Muridae, Mammalia) in the forest blocks separated by the Congo River and its tributaries (Kisangani region, Democratic Republic of Congo) Mammalia. 2008;72:223–8. doi: 10.1515/MAMM.2008.044. DOI
Nicolas V, Bryja J, Akpatou B, Konečný A, Lecompte E, Colyn M, et al. Comparative phylogeography of two sibling species of forest-dwelling rodent (Praomys rostratus and P. tullbergi) in West Africa: different reactions to past forest fragmentation. Mol Ecol. 2008;17:5118–34. doi: 10.1111/j.1365-294X.2008.03974.x. PubMed DOI
Nicolas V, Akpatou B, Wendelen W, Kerbis Peterhans J, Olayemi A, Decher J, et al. Molecular and morphometric variation in two sibling species of the genus Praomys (Rodentia: Muridae): implications for biogeography. Zool J Linn Soc. 2010;160:397–419. doi: 10.1111/j.1096-3642.2009.00602.x. DOI
Smith TB, Schneider CJ, Holder K. Refugial isolation versus ecological gradients. Genetica. 2001;112:383–98. doi: 10.1023/A:1013312510860. PubMed DOI
Kumar S, Subramanian S. Mutation rates in mammalian genomes. Proc Natl Acad Sci U S A. 2002;99:803–8. doi: 10.1073/pnas.022629899. PubMed DOI PMC
Heled J, Drummond AJ. Bayesian inference of population size history from multiple loci. BMC Evol Biol. 2008;8:289. doi: 10.1186/1471-2148-8-289. PubMed DOI PMC
Maley J. The African rain forest – main characteristics of changes in vegetation and climate from the Upper Cretaceous to the Quaternary. P Roy Soc Edinb A. 1996;104B:31–73.
Telfer PT, Souquiere S, Clifford SL, Abernethy KA, Bruford MW, Disotell TR, et al. Molecular evidence for deep phylogenetic divergence in Mandrillus sphinx. Mol Ecol. 2003;12:2019–24. doi: 10.1046/j.1365-294X.2003.01877.x. PubMed DOI
Anhuf D, Ledru MP, Behling H, Da Cruz FW, Cordeiro RC, Van der Hammen T, et al. Paleo-environmental change in Amazonian and African rainforest during the LGM. Palaeogeogr Palaeocl. 2006;239:510–27. doi: 10.1016/j.palaeo.2006.01.017. DOI
White F. Vegetation Map of Africa. Oxford: Oxford University Press; 1981.
Dobigny G, Aniskin V, Granjon L, Cornette R, Volobouev V. Very recent radiation in West African Taterillus: the concerted role of chromosome and climatic changes. Heredity. 2005;95:358–68. doi: 10.1038/sj.hdy.6800730. PubMed DOI
Flugel T, Eckardt FD, Cotterill FPD. The present day drainage patterns of the Congo river system and their Neogene evolution. In: de Wit MJ, Guillocheau F, de Wit MCJ, editors. Geology and Resource Potential of the Congo Basin. Berlin: Springer; 2015. pp. 315–37.
Gambalemoke M, Mukinzi I, Amundala D, Katuala G, Kennis J, Dudu A, et al. Shrew trap efficiency: experience from primary forest, secondary fallow land and old palm plantation in the Congo River Basin, Democratic Republic of Congo. Mammalia. 2008;72:203–12.
Nicolas V, Barrière P, Tapiero A, Colyn M. Shrew species diversity and abundance in Ziama Biosphere Reserve (Guinea): comparison between primary forest, degraded forest and restoration plots. Biodiversity Conserv. 2009;18:2043–61. doi: 10.1007/s10531-008-9572-4. DOI
Thorpe RS, McGregor DP, Cumming AM, Jordan WC. DNA evolution and colonization sequence of island lizards in relation to geological history: mitochondrial, RFLP, cytochrome B, cytochrome oxidase, 12S RNA sequence, and nuclear RAPD analysis. Evolution. 1994;48:230–40. doi: 10.2307/2410090. PubMed DOI
Heim de Balsac H. Les Soricidae dans le milieu désertique saharien. Bonn Zool Beitr. 1968;19:181–8.
Hutterer R, Happold DCD. The shrews of Nigeria. Bonn Zool Monogr. 1983;18:1–79.
Abdel Rahman Ahmed EH, Ducroz JF, Mitchell A, Lamb J, Contrafatto G, Denys C, et al. Phylogeny and historical demography of economically important rodents of the genus Arvicanthis (Mammalia: Muridae) from the Nile Valley: of mice and men. Biol J Linn Soc. 2008;93:641–55. doi: 10.1111/j.1095-8312.2007.00895.x. DOI
Stoetzel E, Denys C, Michaux J, Reynaud S. Mus in Morocco: a Quaternary sequence of intraspecific evolution. Biol J Linn Soc. 2013;109:599–621. doi: 10.1111/bij.12065. DOI
Jacquet F, Hutterer R, Nicolas V, Decher J, Colyn M, Couloux A, et al. New status for two African giant forest shrews, Crocidura goliath goliath and C. goliath nimbasilvanus (Mammalia: Soricomorpha), based on molecular and geometic morphometric analyses. Afr Zool. 2013;48:13–29. doi: 10.3377/004.048.0108. DOI
Vogel P, Cosson JF, Lopez Jurado LF. Taxonomic status and origin of the shrews (Soricidae) from the Canary Islands inferred from a mitochondrial comparison with the European Crocidura species. Mol Phylogenet Evol. 2003;27:271–82. doi: 10.1016/S1055-7903(02)00403-7. PubMed DOI
Jacquet F, Nicolas V, Bonillo C, Cruaud C, Denys C. Barcoding, molecular taxonomy and exploration of the diversity of shrews (Soricomorpha: Soricidae) on Mount Nimba (Guinea) Zool J Linn Soc. 2012;166:672–87. doi: 10.1111/j.1096-3642.2012.00856.x. DOI
Sikes RS, Gannon WL, Animal Care Committee of the American Society of Mammalogists Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J Mammal. 2011;92:235–53. doi: 10.1644/10-MAMM-F-355.1. PubMed DOI PMC
Pfunder M, Holzgang O, Frey JE. Development of microarray-based diagnostics of voles and shrews for use in biodiversity monitoring studies, and evaluation of mitochondrial cytochrome oxidase I vs. cytochrome b as genetic markers. Mol Ecol. 2004;5:1277–86. doi: 10.1111/j.1365-294X.2004.02126.x. PubMed DOI
Dubey S, Salamin N, Ruedi M, Barrière P, Colyn M, Vogel P. Biogeographic origin and radiation of the Old World crocidurine shrews (Mammalia: Soricidae) inferred from mitochondrial and nuclear genes. Mol Phylogenet Evol. 2008;48:953–63. doi: 10.1016/j.ympev.2008.07.002. PubMed DOI
Willows-Munro S, Matthee CA. The evolution of the southern African members of the shrew genus Myosorex: understanding the origin and diversification of a morphologically cryptic group. Mol Phylogenet Evol. 2009;51:394–8. doi: 10.1016/j.ympev.2009.02.012. PubMed DOI
Austerlitz F, David O, Schaeffer B, Bleakley K, Olteanu M, Leblois R, et al. DNA barcode analysis: a comparison of phylogenetic and statistical classification methods. BMC Bioinform. 2009;10:S10. doi: 10.1186/1471-2105-10-S14-S10. PubMed DOI PMC
Hurst GDD, Jiggins FM. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. P Roy Soc Lond B Bio. 2005;272:1525–34. doi: 10.1098/rspb.2005.3056. PubMed DOI PMC
Debruyne R, Schwarz C, Poinar H. Comment on “Whole-genome shotgun sequencing of mitochondria from ancient hair shafts. Science. 2008;322:857. doi: 10.1126/science.1158417. PubMed DOI
Thompson JD, Higgins DG, Gibson TJ. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80. doi: 10.1093/nar/22.22.4673. PubMed DOI PMC
Kosakovsky Pond SL, Frost SDW. Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics. 2005;21:2531–3. doi: 10.1093/bioinformatics/bti320. PubMed DOI
Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SDW. Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol. 2006;23:1891–901. doi: 10.1093/molbev/msl051. PubMed DOI
Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP. Bayesian inference of phylogeny and its impact on evolutionary biology. Science. 2001;294:2310–4. doi: 10.1126/science.1065889. PubMed DOI
Excoffier L, Laval G, Schneider S. Arlequin version 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online. 2005;1:47–50. PubMed PMC
Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–20. doi: 10.1007/BF01731581. PubMed DOI
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol. 2011;28:2731–9. doi: 10.1093/molbev/msr121. PubMed DOI PMC
Butler PM. Neogene Insectivora. In: Werdelin L, Sanders WJ, editors. Cenozoic mammals of Africa. Berkeley: University of California Press; 2010. pp. 573–80.
Reumer JWF. Speciation and evolution in the Soricidae (Mammalia: Insectivora) in relation with the paleoclimate. Rev Suisse Zool. 1989;96:81–90.
Robinson P, Black CC. Vertebrate faunas from the Neogene of Tunisia. Ann Geol Surv Egypt. 1974;4:319–32.
Mein P, Pickford M. Late Miocene micromammals from the Lukeino Formation (6.1 to 5.8 Ma), Kenya. Bull Mens Soc Linn Lyon. 2006;75:183–223.
Maldonado JE, Vila C, Wayne RK. Tripartite genetic subdivisions in the ornate shrew (Sorex ornatus) Mol Ecol. 2001;10:127–47. doi: 10.1046/j.1365-294X.2001.01178.x. PubMed DOI
Harris AH. Fossil history of shrews in North America. In: Wojcik JM, Wolsan M, editors. Evolution of Shrews. Bialowieza: Mammal Research Institute, Polish Academy of Science; 1998. pp. 121–32.
Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214. doi: 10.1186/1471-2148-7-214. PubMed DOI PMC
Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4:699–710. doi: 10.1371/journal.pbio.0040088. PubMed DOI PMC
Ho SYW, Shapiro B, Phillips M, Cooper A, Drummond AJ. Evidence for time dependency of molecular rate estimates. Syst Biol. 2007;56:515–22. doi: 10.1080/10635150701435401. PubMed DOI
Fumagalli L, Taberlet P, Stewart DT, Gielli L, Hausser J, Vogel P. Molecular phylogeny and Evolution of Sorex shrews (Soricidae: Insectivora) inferred from mitochondrial DNA sequence data. Mol Phylogenet Evol. 1999;11:222–35. doi: 10.1006/mpev.1998.0568. PubMed DOI
Rambaut A, Drummond AJ. Tracer v1.4. Available via http://beast.bio.ed.ac.uk/Tracer. 2007.
Rogers AR, Harpending H. Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol. 1992;9:552–69. PubMed
Tajima F. The effect of change in population size on DNA polymorphism. Genetics. 1989;123:597–601. PubMed PMC
Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics. 1993;133:693–709. PubMed PMC
Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 1997;147:915–25. PubMed PMC
Rozas J, Sanchez-De I, Barrio JC, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics. 2003;19:2496–7. doi: 10.1093/bioinformatics/btg359. PubMed DOI