High-throughput concentration-response analysis for omics datasets
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25900799
DOI
10.1002/etc.3025
Knihovny.cz E-zdroje
- Klíčová slova
- Biostatistics, Dose-response modeling, Ecotoxicogenomics, Mixture toxicity, Myriophyllum, Zebrafish embryo,
- MeSH
- dánio pruhované růst a vývoj metabolismus MeSH
- ekosystém * MeSH
- embryo nesavčí účinky léků metabolismus MeSH
- genomika * MeSH
- látky znečišťující životní prostředí toxicita MeSH
- lineární modely MeSH
- metabolomika * MeSH
- rychlé screeningové testy MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- tetrachlorethylen toxicita MeSH
- transkriptom účinky léků MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- látky znečišťující životní prostředí MeSH
- tetrachlorethylen MeSH
Omics-based methods are increasingly used in current ecotoxicology. Therefore, a large number of observations for various toxic substances and organisms are available and may be used for identifying modes of action, adverse outcome pathways, or novel biomarkers. For these purposes, good statistical analysis of toxicogenomic data is vital. In contrast to established ecotoxicological techniques, concentration-response modeling is rarely used for large datasets. Instead, statistical hypothesis testing is prevalent, which provides only a limited scope for inference. The present study therefore applied automated concentration-response modeling for 3 different ecotoxicotranscriptomic and ecotoxicometabolomic datasets. The modeling process was performed by simultaneously applying 9 different regression models, representing distinct mechanistic, toxicological, and statistical ideas that result in different curve shapes. The best-fitting models were selected by using Akaike's information criterion. The linear and exponential models represented the best data description for more than 50% of responses. Models generating U-shaped curves were frequently selected for transcriptomic signals (30%), and sigmoid models were identified as best fit for many metabolomic signals (21%). Thus, selecting the models from an array of different types seems appropriate, because concentration-response functions may vary because of the observed response type, and they also depend on the compound, the organism, and the investigated concentration and exposure duration range. The application of concentration-response models can help to further tap the potential of omics data and is a necessary step for quantitative mixture effect assessment at the molecular response level.
Citace poskytuje Crossref.org