The changes of angiogenesis and immune cell infiltration in the intra- and peri-tumoral melanoma microenvironment

. 2015 Apr 09 ; 16 (4) : 7876-89. [epub] 20150409

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25913374

Malignant melanoma (MM) urgently needs identification of new markers with better predictive value than currently-used clinical and histological parameters. Cancer cells stimulate the formation of a specialized tumor microenvironment, which reciprocally affects uncontrolled proliferation and migration. However, this microenvironment is heterogeneous with different sub-compartments defined by their access to oxygen and nutrients. This study evaluated microvascular density (MVD), CD3+ lymphocytes (TILs) and FOXP3+ T-regulatory lymphocytes (Tregs) on formalin-fixed paraffin-embedded tissue sections using light microscopy. We analyzed 82 malignant melanomas, divided according to the AJCC TNM classification into four groups--pT1 (35), pT2 (17), pT3 (18) and pT4 (12)--and 25 benign pigmented nevi. All parameters were measured in both the central areas of tumors (C) and at their periphery (P). A marked increase in all parameters was found in melanomas compared to nevi (p = 0.0001). There was a positive correlation between MVD, TILs, FOXP3+ Tregs and the vertical growth phase. The results show that MVD, TILs and FOXP3+ Tregs substantially influence cutaneous melanoma microenvironment. We found significant topographic differences of the parameters between central areas of tumors and their boundaries.

Zobrazit více v PubMed

Eriksson H., Frohm-Nilsson M., Järås J., Kanter-Lewensohn L., Kjellman P., Månsson-Brahme E., Vassilaki I., Hansson J. Prognostic factors in localized invasive primary cutaneous malignant melanoma: Results of a large population-based study. Br. J. Dermatol. 2015;172:175–186. doi: 10.1111/bjd.13171. PubMed DOI

Brandner J.M., Haass N.K. Melanoma’s connections to the tumour microenvironment. Pathology. 2013;45:443–452. doi: 10.1097/PAT.0b013e328363b3bd. PubMed DOI

Mao Y., Poschke I., Wennerberg E., de Coana P., Brage S.E., Schultz I., Hansson J., Masucci G., Lundqvist A., Kiessling R. Melanoma-educated CD14+ cells acquire a myeloid-derive suppressor cell phenotype through COX-2-dependent mechanisms. Cancer Res. 2013;73:3877–3887. doi: 10.1158/0008-5472.CAN-12-4115. PubMed DOI

Nico B., Benagiano V., Mangieri D., Maruotti N., Vacca A., Ribatti D. Evaluation of microvascular density in tumors, pro and contra. Histol. Histopathol. 2008;23:601–607. PubMed

Matsuda Y., Hagio M., Ishiwata T. Nestin: A novel angiogenesis marker and possible target for tumor angiogenesis. World J. Gastroenterol. 2013;19:42–48. doi: 10.3748/wjg.v19.i1.42. PubMed DOI PMC

Ria R., Reale A., Castrovilli A., Mangialardi G., Dammacco F., Ribatti D., Vacca A. Angiogenesis and prognosis in human melanoma. Dermatol. Res. Pract. 2010;2010 Article ID 185687. PubMed PMC

Ehrmann J., Kolar Z., Mokry J. Nestin as a diagnostic and prognostic marker: Immunohistochemical analysis of its expression in different tumours. J. Clin. Pathol. 2005;58:222–223. doi: 10.1136/jcp.2004.021238. PubMed DOI PMC

Brychtova S., Fiuraskova M., Hlobilkova A., Brychta T., Hirnak J. Nestin expression in cutaneous melanomas and melanocytic nevi. J. Cutan. Pathol. 2007;34:370–375. doi: 10.1111/j.1600-0560.2006.00627.x. PubMed DOI

Janikova M., Skarda J., Dziechciarkova M., Radova L., Chmelova J., Krejci V., Sedlakova E., Zapletalova J., Langova K., Klein J., et al. Identification of CD133+/nestin+ putative cancer stem cells in non-small cell lung cancer. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech Repub. 2010;154:321–326. doi: 10.5507/bp.2010.048. PubMed DOI

Kretschmer S., Dethlefsen I., Hagner-Benes S., Marsch L.M., Garn H., König P. Visualization of intrapulmonary lymph vessels in healthy and inflamed murine lung using CD90/Thy-1 as a marker. PLoS ONE. 2013;8 doi: 10.1371/journal.pone.0055201. PubMed DOI PMC

Jurisic G., Iolyeva M., Proulx S.T., Halin C., Detmar M. Thymus cell antigen 1 (Thy1, CD90) is expressed by lymphatic vessels and mediates cell adhesion to lymphatic endothelium. Exp. Cell Res. 2010;316:2982–2992. doi: 10.1016/j.yexcr.2010.06.013. PubMed DOI PMC

Schubert K., Gutknecht D., Köberle M., Anderegg U., Saalbach A. Melanoma cells use Thy-1 (CD90) on endothelial cells for metastasis formation. Am. J. Pathol. 2013;182:266–276. doi: 10.1016/j.ajpath.2012.10.003. PubMed DOI

Saalbach A., Wetzel A., Haustein U.F., Sticherling M., Simon J.C., Anderegg U. Interaction of human Thy-1 (CD90) with the integrin αvβ3 (CD51/CD61): An important mechanism mediating melanoma cell adhesion to activated endothelium. Oncogene. 2005;24:4710–4720. doi: 10.1038/sj.onc.1208559. PubMed DOI

Gerber A.L., Münst A., Schalpbach C., Shafingi M., Kiermeir D., Hüsler R., Hunger R.E. High expression of FOXP3 in primary melanoma is associated with tumour progression. Br. J. Dermathol. 2014;170:103–109. doi: 10.1111/bjd.12641. PubMed DOI

Zhang S., Zhang D., Sun B. Vasculogenic mimicry: Current status and future prospects. Cancer Lett. 2007;254:157–164. doi: 10.1016/j.canlet.2006.12.036. PubMed DOI

Wilke M.C., Wu K., Zhao E., Wand G., Zou W. Prognostic significance of regulatory T cells in tumor. Int. J. Cancer. 2010;127:748–758. PubMed

Niu J., Jiang C.H., Li C.H., Liu L., Li K. Foxp3 expression in melanoma cells as a possible mechanism of resistance to immune destruction. Cancer Immunol. Immunother. 2011;60:1109–1118. doi: 10.1007/s00262-011-1025-3. PubMed DOI PMC

Baumgartner J., Wilson C., Palmer B., Richter D., Banerjee A., McCarter M. Melanoma induces immunosuppression by upregulating FOXP3+ regulatory T cells. J. Surg. Res. 2007;141:72–77. doi: 10.1016/j.jss.2007.03.053. PubMed DOI PMC

Deschoolmeester V., Baay M., Marc V.E., Weyler J., Vermeulen P., Lardon F., Vermorken J.B. Tumor infiltrating lymphocytes: An intriguing player in the survival of colorectal cancer patients. BMC Immunol. 2010;12:11–19. PubMed PMC

Titu L.V., Monson J.R., Greenman J. The role of CD8+ T cells in immune responses to colorectal cancer. Cancer Immunol. Immunother. 2002;51:235–247. doi: 10.1007/s00262-002-0276-4. PubMed DOI PMC

Loose D., van de Wiele C. The immune system and cancer. Cancer Biother. Radiopharm. 2009;24:369–376. doi: 10.1089/cbr.2008.0593. PubMed DOI

Yu P., Fu Y. Tumor-infiltrating T lymphocytes: Friends or foes? Lab. Investig. 2006;86:231–245. doi: 10.1038/labinvest.3700389. PubMed DOI

Lizee G., Overwijk W.W., Radvanyi L., Gao J., Sharma P., Hwu P. Harnessing the power of the immune system to target cancer. Annu. Rev. Med. 2013;64:71–90. doi: 10.1146/annurev-med-112311-083918. PubMed DOI

Ma M.W., Medicherla R.C., Qian M., Vega-Saenz de Miera E., Friedman E.B., Berman R.S., Shapiro R.L., Pavlick A.C., Ott P.A., Bhardwaj N., et al. Immune response in melanoma: An in-depth analysis of the primary tumor and corresponding sentinel lymph node. Mod. Pathol. 2012;25:1000–1010. doi: 10.1038/modpathol.2012.43. PubMed DOI PMC

Koch M., Beckhove P., Op den Winkel J., Autenrieth D., Wagner P., Nummer D., Specht S., Antolovic D., Galindo L., Schmitz-Winnenthal F.H., et al. Tumor infiltrating T lymphocytes in colorectal cancer: Tumor-selective activation and cytotoxic activity in situ. Ann. Surg. 2006;244:986–992. doi: 10.1097/01.sla.0000247058.43243.7b. PubMed DOI PMC

Prall F., Dührkop T., Weirich V., Ostwald C., Lenz P., Nizze H., Barten M. Prognostic role of CD8+ tumor-infiltrating lymphocytes in stage III colorectal cancer with and without microsatellite instability. Hum. Pathol. 2004;35:808–816. doi: 10.1016/j.humpath.2004.01.022. PubMed DOI

Casati C., Dalerba P., Rivoltini L., Gallino G., Deho P., Rini F., Belli F., Mezzanzanica D., Costa A., Andreola S., et al. The apoptosis inhibitor protein survivin induces tumor-specific CD8+ and CD4+ T cells in colorectal cancer patients. Cancer Res. 2003;63:4507–4515. PubMed

Teranishi N., Naito Z., Ishiwata T., Tanaka N., Furukawa K., Seya T., Shinji S., Tajiri T. Identification of neovasculature using nestin in colorectal cancer. Int. J. Oncol. 2007;30:593–603. PubMed

Pastushenko I., Vermuelen P.B., Carapeto F.J., van den Eynden G., Rutten A., Ara M., Dirix L.Y., van Laere S. Blood microvessel density, lymphatic microvessel density and lymphatic invasion in predicting melanoma metastases: Systematic review and meta-analysis. Br. J. Dermatol. 2014;170:66–77. doi: 10.1111/bjd.12688. PubMed DOI

Kerr E.H., Wang D., Lewis J.S., Said-Al-Naief N., Hameed O. Lack of correlation between microvascular density and pathological features and outcomes in sinonasal and oral mucosal melanomas. Head Neck Pathol. 2011;5:199–204. doi: 10.1007/s12105-011-0255-1. PubMed DOI PMC

Cuitino M.C., Massone A.R., Idiart J.R. Lack of prognostic significance of angiogenesis in canine melanocytic tumours. J. Comp. Pathol. 2012;147:147–152. doi: 10.1016/j.jcpa.2012.02.001. PubMed DOI

Ishiwata T., Matsuda Y., Naito Z. Nestin in gastrointestinal and colorectal cancers: Effects on cells and tumor angiogenesis. World J. Gastroenterol. 2011;17:409–418. doi: 10.3748/wjg.v17.i4.409. PubMed DOI PMC

Gershenwald E.J., Soong S., Balch M.Ch., On behalf of the American Joint Committee on Cancer (AJCC) Melanoma Staging Committee 2010 TNM staging system for cutaneous melanoma and beyond. Ann. Surg. Oncol. 2010;17:1475–1477. doi: 10.1245/s10434-010-0986-3. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace