An improved method for the visualization of conductive vessels in Arabidopsis thaliana inflorescence stems

. 2015 ; 6 () : 211. [epub] 20150409

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25914701

Dye perfusion is commonly used for the identification of conductive elements important for the study of xylem development as well as precise hydraulic estimations. The tiny size of inflorescence stems, the small amount of vessels in close arrangement, and high hydraulic resistivity delimit the use of the method for quantification of the water conductivity of Arabidopsis thaliana, one of the recently most extensively used plant models. Here, we present an extensive adjustment to the method in order to reliably identify individual functional (conductive) vessels. Segments of inflorescence stems were sealed in silicone tubes to prevent damage and perfused with a dye solution. Our results showed that dyes often used for staining functional xylem elements (safranin, fuchsine, toluidine blue) failed with Arabidopsis. In contrast, Fluorescent Brightener 28 dye solution perfused through segments stained secondary cell walls of functional vessels, which were clearly distinguishable in native cross sections. When compared to identification based on the degree of development of secondary cell walls, identification with the help of dye perfusion revealed a significantly lower number of functional vessels and values of theoretical hydraulic conductivity. We found that lignified but not yet functional vessels form a substantial portion of the xylem in apical and basal segments of Arabidopsis and, thus, significantly affect the analyzed functional parameters of xylem. The presented methodology enables reliable identification of individual functional vessels, allowing thus estimations of hydraulic conductivities to be improved, size distributions and vessel diameters to be refined, and data variability generally to be reduced.

Zobrazit více v PubMed

Barnard D. M., Lachenbruch B., McCulloh K. A., Kitin P., Meinzer F. C. (2013). Do ray cells provide a pathway for radial water movement in the stems of conifer trees? Am. J. Bot. 100, 322–331. 10.3732/ajb.1200333 PubMed DOI

Bollhöner B., Prestele J., Tuominen H. (2012). Xylem cell death: emerging understanding of regulation and function. J. Exp. Bot. 63, 1081–1094. 10.1093/jxb/err438 PubMed DOI

Cai J., Tyree M. T. (2010). The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx. Plant Cell Environ. 33, 1059–1069. 10.1111/j.1365-3040.2010.02127.x PubMed DOI

Čermák J., Jimenez M. S., González-Rodríguez A. M., Morales D. (2002). Laurel forests in Tenerife, Canary Islands. II. Efficiency of the water conducting system in Laurus azorica trees. Trees Struct. Funct. 16, 538–546 10.1007/s00468-002-0198-y DOI

Chaffey N., Cholewa E., Regan S., Sundberg B. (2002). Secondary xylem development in Arabidopsis: a model for wood formation. Physiol. Plant. 114, 594–600. 10.1034/j.1399-3054.2002.1140413.x PubMed DOI

Choat B., Jansen S., Brodribb T. J., Cochard H., Delzon S., Bhaskar R., et al. . (2012). Global convergence in the vulnerability of forests to drought. Nature 491, 752–755. 10.1038/nature11688 PubMed DOI

Christman M. A., Sperry J. S. (2010). Single-vessel flow measurements indicate scalariform perforation plates confer higher flow resistance than previously estimated. Plant Cell Environ. 33, 431–443. 10.1111/j.1365-3040.2009.02094.x PubMed DOI

Garcia L. S. (2002). Laboratory identification of the microsporidia. J. Clin. Microbiol. 40, 1892–1901. 10.1128/JCM.40.6.1892-1901.2002 PubMed DOI PMC

Gloser V., Baláž M., Svoboda P. (2011). Analysis of anatomical and functional traits of xylem in Humulus lupulus L. stems. Plant Soil Environ. 57, 338–343.

Hacke U. G., Sperry J. S. (2001). Functional and ecological xylem anatomy. Perspect. Plant Ecol. Evol. Syst. 4, 97–115 10.1078/1433-8319-00017 DOI

Hacke U. G., Sperry J. S., Wheeler J. K., Castro L. (2006). Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol. 26, 689–701. 10.1093/treephys/26.6.689 PubMed DOI

Halis Y., Djehichi S., Senoussi M. M. (2012). Vessel development and the importance of lateral flow in water transport within developing bundles of current-year shoots of grapevine (Vitis vinifera L.). Trees Struct. Funct. 26, 705–714 10.1007/s00468-011-0637-8 DOI

Halis Y., Mayouf R., Benhaddya M. L., Belhamra M. (2013). Intervessel connectivity and relationship with patterns of lateral water exchange within and between xylem sectors in seven xeric shrubs from the great Sahara desert. J. Plant Res. 126, 223–231. 10.1007/s10265-012-0514-6 PubMed DOI

Hejátko J., Ryu H., Kim G. T., Dobešová R., Choi S., Choi S. M., et al. . (2009). The histidine kinases CYTOKININ-INDEPENDENT1 and ARABIDOPSIS HISTIDINE KINASE2 and 3 regulate vascular tissue development in Arabidopsis shoots. Plant Cell 21, 2008–2021. 10.1105/tpc.109.066696 PubMed DOI PMC

Hon D. N. S. (2001). Weathering and photochemistry of wood, in Wood and Cellulosic Chemistry, eds Hon D. N. S., Shiraishi N. (New York, NY: Marcel Dekker; ), 513–546.

Jupa R., Baláž M., Svoboda P., Gloser V. (2013). Inherent variability in structural and functional traits of xylem among three hop varieties. Plant Soil Environ. 59, 273–279.

Lee S. J., Hwang B. G., Kim H. K. (2013). Hydraulic characteristics of water-refilling process in excised roots of Arabidopsis. Planta 238, 307–315. 10.1007/s00425-013-1889-x PubMed DOI

Martre P., Durand J. L., Cochard H. (2000). Changes in axial hydraulic conductivity along elongating leaf blades in relation to xylem maturation in tall fescue. New Phytol. 146, 235–247 10.1046/j.1469-8137.2000.00641.x PubMed DOI

Mason D. J., López-Amorós R., Allman R., Stark J. M., Lloyd D. (1995). The ability of membrane potential dyes and calcofluor white to distinguish between viable and non-viable bacteria. J. Appl. Bacteriol. 78, 309–315. 10.1111/j.1365-2672.1995.tb05031.x PubMed DOI

Nieminen K. M., Kauppinen L., Helariutta Y. (2004). A weed for wood? Arabidopsis as a genetic model for xylem development. Plant Physiol. 135, 653–659. 10.1104/pp.104.040212 PubMed DOI PMC

Orians C. M., van Vuuren M. M. I., Harris N. L., Babst B. A., Ellmore G. S. (2004). Differential sectoriality in long-distance transport in temperate tree species: evidence from dye flow, N-15 transport, and vessel element pitting. Trees Struct. Funct. 18, 501–509 10.1007/s00468-004-0326-y DOI

Rančić D., Quarrie S. P., Terzić M., Savić S., Stikić R. (2008). Comparison of light and fluorescence microscopy for xylem analysis in tomato pedicels during fruit development. J. Microsc. 232, 618–622. 10.1111/j.1365-2818.2008.02127.x PubMed DOI

Sakamoto Y., Sano Y. (2000). Inhibition of water conductivity caused by watermark disease in Salix sachalinensis. IAWA J. 21, 49–60 10.1163/22941932-90000236 DOI

Sano Y., Okamura Y., Utsumi Y. (2005). Visualizing water-conduction pathways of living trees: selection of dyes and tissue preparation methods. Tree Physiol. 25, 269–275. 10.1093/treephys/25.3.269 PubMed DOI

Sperry J. S., Hacke U. G., Wheeler J. K. (2005). Comparative analysis of end wall resistivity in xylem conduits. Plant Cell Environ. 28, 456–465 10.1111/j.1365-3040.2005.01287.x DOI

Sun Q., Rost T. L., Matthews M. A. (2006). Pruning-induced tylose development in stems of current-year shoots of Vitis vinifera (Vitaceae). Am. J. Bot. 93, 1567–1576. 10.3732/ajb.93.11.1567 PubMed DOI

Tang A. C., Boyer J. S. (2002). Growth-induced water potentials and the growth of maize leaves. J. Exp. Bot. 53, 489–503. 10.1093/jexbot/53.368.489 PubMed DOI

Tixier A., Cochard H., Badel E., Dusotoit-Coucaud A., Jansen S., Herbette S. (2013). Arabidopsis thaliana as a model species for xylem hydraulics: does size matter? J. Exp. Bot. 64, 2295–2305. 10.1093/jxb/ert087 PubMed DOI PMC

Tyree M. T., Zimmermann M. H. (2002). Xylem Structure and Ascent of Sap. Berlin: Springer Verlag.

Umebayashi T., Utsumi Y., Koga S., Inoue S., Matsumura J., Oda K., et al. (2010). Xylem water-conducting patterns of 34 broadleaved evergreen trees in southern Japan. Trees Struct. Funct. 24, 571–583 10.1007/s00468-010-0428-7 DOI

Umebayashi T., Utsumi Y., Koga S., Inoue S., Shiiba Y., Arakawa K., et al. . (2007). Optimal conditions for visualizing water-conducting pathways in a living tree by the dye injection method. Tree Physiol. 27, 993–999. 10.1093/treephys/27.7.993 PubMed DOI

Voelker S. L., Lachenbruch B., Meinzer F. C., Kitin P., Strauss S. H. (2011). Transgenic poplars with reduced lignin show impaired xylem conductivity, growth efficiency and survival. Plant Cell Environ. 34, 655–668. 10.1111/j.1365-3040.2010.02270.x PubMed DOI

Wheeler T. D., Stroock A. D. (2008). The transpiration of water at negative pressures in a synthetic tree. Nature 455, 208–212. 10.1038/nature07226 PubMed DOI

Zanne A. E., Sweeney K., Sharma M., Orians C. M. (2006). Patterns and consequences of differential vascular sectoriality in 18 temperate tree and shrub species. Funct. Ecol. 20, 200–206 10.1111/j.1365-2435.2006.01101.x DOI

Zhang J., Elo A., Helariutta Y. (2011). Arabidopsis as a model for wood formation. Curr. Opin. Biotechnol. 22, 293–299. 10.1016/j.copbio.2010.11.008 PubMed DOI

Zhao X. H., Liu L. Y., Nan L. J., Wang H., Li H. (2014). Development of tyloses in the xylem vessels of Meili grapevine and their effect on water transportation. Russ. J. Plant Physiol. 61, 194–203 10.1134/S1021443714020198 DOI

Zimmermann M. H., Jeje A. A. (1981). Vessel-length distribution in stems of some American woody plants. Can. J. Bot. 59, 1882–1892 10.1139/b81-248 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace