Catalytic Cycle of Multicopper Oxidases Studied by Combined Quantum- and Molecular-Mechanical Free-Energy Perturbation Methods
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26039490
DOI
10.1021/acs.jpcb.5b02864
Knihovny.cz E-zdroje
- MeSH
- chemické modely * MeSH
- isomerie MeSH
- katalýza MeSH
- měď chemie MeSH
- oxidace-redukce MeSH
- oxidoreduktasy chemie metabolismus MeSH
- protony MeSH
- rozpouštědla MeSH
- simulace molekulární dynamiky MeSH
- transport elektronů MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- copper oxidase MeSH Prohlížeč
- měď MeSH
- oxidoreduktasy MeSH
- protony MeSH
- rozpouštědla MeSH
- voda MeSH
We have used combined quantum mechanical and molecular mechanical free-energy perturbation methods in combination with explicit solvent simulations to study the reaction mechanism of the multicopper oxidases, in particular, the regeneration of the reduced state from the native intermediate. For 52 putative states of the trinuclear copper cluster, differing in the oxidation states of the copper ions and the protonation states of water- and O2-derived ligands, we have studied redox potentials, acidity constants, isomerization reactions, as well as water- and O2 binding reactions. Thereby, we can propose a full reaction mechanism of the multicopper oxidases with atomic detail. We also show that the two copper sites in the protein communicate so that redox potentials and acidity constants of one site are affected by up to 0.2 V or 3 pKa units by a change in the oxidation state of the other site.
Citace poskytuje Crossref.org
Mono- and binuclear non-heme iron chemistry from a theoretical perspective