Gradual decline in mobility with the adoption of food production in Europe

. 2015 Jun 09 ; 112 (23) : 7147-52. [epub] 20150518

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu historické články, časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid26060299

Increased sedentism during the Holocene has been proposed as a major cause of decreased skeletal robusticity (bone strength relative to body size) in modern humans. When and why declining mobility occurred has profound implications for reconstructing past population history and health, but it has proven difficult to characterize archaeologically. In this study we evaluate temporal trends in relative strength of the upper and lower limb bones in a sample of 1,842 individuals from across Europe extending from the Upper Paleolithic [11,000-33,000 calibrated years (Cal y) B.P.] through the 20th century. A large decline in anteroposterior bending strength of the femur and tibia occurs beginning in the Neolithic (∼ 4,000-7,000 Cal y B.P.) and continues through the Iron/Roman period (∼ 2,000 Cal y B.P.), with no subsequent directional change. Declines in mediolateral bending strength of the lower limb bones and strength of the humerus are much smaller and less consistent. Together these results strongly implicate declining mobility as the specific behavioral factor underlying these changes. Mobility levels first declined at the onset of food production, but the transition to a more sedentary lifestyle was gradual, extending through later agricultural intensification. This finding only partially supports models that tie increased sedentism to a relatively abrupt Neolithic Demographic Transition in Europe. The lack of subsequent change in relative bone strength indicates that increasing mechanization and urbanization had only relatively small effects on skeletal robusticity, suggesting that moderate changes in activity level are not sufficient stimuli for bone deposition or resorption.

Zobrazit více v PubMed

Kelly RL. Mobility/sedentism – Concepts, archaeological measures, and effects. Annu Rev Anthropol. 1992;21:43–66.

Bocquet-Appel J-P. Explaining the Neolithic demographic transition. In: Bocquet-Appel J-P, Bar-Yosef O, editors. The Neolithic Demographic Transition and its Consequences. Springer; New York: 2008. pp. 35–55.

Cohen MN. Health and the Rise of Civilization. Yale Univ Press; New Haven, CT: 1989.

Cohen MN, Crane-Kramer GMM, eds (2007) Ancient Health: Skeletal Indicators of Agricultural and Economic Intensification (Univ Press of Florida, Gainesville, FL)

Bar -Yosef O, Belfer-Cohen A. The origins of sedentism and farming communities in the Levant. J World Prehist. 1989;3(4):447–498.

Larsen CS. The agricultural revolution as environmental catastrophe: Implications for health and lifestyle in the Holocene. Quat Int. 2006;150:12–20.

Cohen MN. The Food Crisis in Prehistory. Yale Univ Press; New Haven, CT: 1977.

Mays SA. Osteoporosis in earlier human populations. J Clin Densitom. 1999;2(1):71–78. PubMed

Nelson DA, Sauer NJ, Agarwal SC. Evolutionary aspects of bone health. Clin Rev Bone Min Metabol. 2002;1(3-4):169–179.

Ryan TM, Shaw CN. Gracility of the modern Homo sapiens skeleton is the result of decreased biomechanical loading. Proc Natl Acad Sci USA. 2015;112(2):372–377. PubMed PMC

Marean CW. The origins and significance of coastal resource use in Africa and Western Eurasia. J Hum Evol. 2014;77:17–40. PubMed

Milisauskas S, Kruk J. 2002. The Middle Neolithic. European Prehistory: A Survey, ed Milisauskas S (Kluwer Academic/Plenum, New York), pp 193–246.

Bocquet-Appel J-P, Bar-Yosef O. Prehistoric demography in a time of globalization. In: Bocquet-Appel J-P, Bar-Yosef O, editors. The Neolithic Demographic Transition and its Consequences. Springer; New York: 2008. pp. 1–10.

Bellwood P. First Farmers: The Origin of Agricultural Societies. Blackwell; Oxford: 2005.

Bocquet-Appel JP. Paleoanthropological traces of a neolithic demographic transition. Curr Anthropol. 2002;43:637–650.

Jochim M. The Mesolithic. In: Milisauskas S, editor. European Prehistory: A Survey. Kluwer Academic/Plenum; New York: 2002. pp. 115–141.

Larsen CS. Bioarchaeology: Interpreting Behavior from the Human Skeleton. 2nd Ed Cambridge Univ Press; Cambridge, UK: 2015.

Pearson OM, Lieberman DE. The aging of Wolff’s “law”: Ontogeny and responses to mechanical loading in cortical bone. Am J Phys Anthropol. 2004;47(Suppl 39):63–99. PubMed

Wallace IJ, Tommasini SM, Judex S, Garland T, Jr, Demes B. Genetic variations and physical activity as determinants of limb bone morphology: An experimental approach using a mouse model. Am J Phys Anthropol. 2012;148(1):24–35. PubMed

Ruff C, Holt B, Trinkaus E. Who’s afraid of the big bad Wolff?: “Wolff’s law” and bone functional adaptation. Am J Phys Anthropol. 2006;129(4):484–498. PubMed

Warden SJ, et al. Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc Natl Acad Sci USA. 2014;111(14):5337–5342. PubMed PMC

Erlandson MC, et al. Former premenarcheal gymnasts exhibit site-specific skeletal benefits in adulthood after long-term retirement. J Bone Miner Res. 2012;27(11):2298–2305. PubMed

Trinkaus E, Churchill SE, Ruff CB. Postcranial robusticity in Homo. II: Humeral bilateral asymmetry and bone plasticity. Am J Phys Anthropol. 1994;93(1):1–34. PubMed

Ruff CB. Mechanical determinants of bone form: Insights from skeletal remains. J Musculoskelet Neuronal Interact. 2005;5(3):202–212. PubMed

Ruff CB, Trinkaus E, Walker A, Larsen CS. Postcranial robusticity in Homo. I: Temporal trends and mechanical interpretation. Am J Phys Anthropol. 1993;91(1):21–53. PubMed

Chirchir H, et al. Recent origin of low trabecular bone density in modern humans. Proc Natl Acad Sci USA. 2015;112(2):366–371. PubMed PMC

Trinkaus E, Ruff CB. Femoral and tibial diaphyseal cross-sectional geometry in Pleistocene Homo. PaleoAnthropol. 2012;2012:13–62.

Milisauskas S, ed (2002) European Prehistory: A Survey (Kluwer Academic/Plenum, New York)

Ruff CB. Biomechanical analyses of archaeological human skeletal samples. In: Katzenburg MA, Saunders SR, editors. Biological Anthropology of the Human Skeleton. 2nd Ed. John Wiley and Sons, Inc.; New York: 2008. pp. 183–206.

Shaw CN, Stock JT. Intensity, repetitiveness, and directionality of habitual adolescent mobility patterns influence the tibial diaphysis morphology of athletes. Am J Phys Anthropol. 2009;140(1):149–159. PubMed

Shaw CN, Stock JT. Habitual throwing and swimming correspond with upper limb diaphyseal strength and shape in modern human athletes. Am J Phys Anthropol. 2009;140(1):160–172. PubMed

Carter DR. Anisotropic analysis of strain rosette information from cortical bone. J Biomech. 1978;11(4):199–202. PubMed

Burr DB, et al. In vivo measurement of human tibial strains during vigorous activity. Bone. 1996;18(5):405–410. PubMed

Macdonald HM, Cooper DM, McKay HA. Anterior-posterior bending strength at the tibial shaft increases with physical activity in boys: Evidence for non-uniform geometric adaptation. Osteoporos Int. 2009;20(1):61–70. PubMed

Rantalainen T, Nikander R, Heinonen A, Suominen H, Sievänen H. Direction-specific diaphyseal geometry and mineral mass distribution of tibia and fibula: A pQCT study of female athletes representing different exercise loading types. Calcif Tissue Int. 2010;86(6):447–454. PubMed

Ruff CB. Sexual dimorphism in human lower limb bone structure: Relationship to subsistence strategy and sexual division of labor. J Hum Evol. 1987;16(5):391–416.

Stock J, Pfeiffer S. Linking structural variability in long bone diaphyses to habitual behaviors: Foragers from the southern African Later Stone Age and the Andaman Islands. Am J Phys Anthropol. 2001;115(4):337–348. PubMed

Stock JT. Hunter-gatherer postcranial robusticity relative to patterns of mobility, climatic adaptation, and selection for tissue economy. Am J Phys Anthropol. 2006;131(2):194–204. PubMed

Holt BM. Mobility in Upper Paleolithic and Mesolithic Europe: Evidence from the lower limb. Am J Phys Anthropol. 2003;122(3):200–215. PubMed

Ruff CB, et al. Body size, body proportions, and mobility in the Tyrolean “Iceman”. J Hum Evol. 2006;51(1):91–101. PubMed

Marchi D, Sparacello V, Shaw C. Mobility and lower limb robusticity of a pastoralist Neolithic population from north-western Italy. In: Pinhasi R, Stock JT, editors. Human Bioarchaeology of the Transition to Agriculture. Wiley-Blackwell; New York: 2011. pp. 317–346.

Macintosh AA, Pinhasi R, Stock JT. Lower limb skeletal biomechanics track long-term decline in mobility across ∼6150 years of agriculture in Central Europe. J Arch Sci. 2014;52:376–390.

Wallace IJ, et al. Exercise-induced bone formation is poorly linked to local strain magnitude in the sheep tibia. PLoS ONE. 2014;9(6):e99108. PubMed PMC

Holliday TW. Body proportions in Late Pleistocene Europe and modern human origins. J Hum Evol. 1997;32(5):423–448. PubMed

Shaw CN, Stock JT. The influence of body proportions on femoral and tibial midshaft shape in hunter-gatherers. Am J Phys Anthropol. 2011;144(1):22–29. PubMed

Weaver TD. The shape of the Neandertal femur is primarily the consequence of a hyperpolar body form. Proc Natl Acad Sci USA. 2003;100(12):6926–6929. PubMed PMC

Davies TG, Stock JT. The influence of relative body breadth on the diaphyseal morphology of the human lower limb. Am J Hum Biol. 2014;26(6):822–835. PubMed

Ruff CB. Biomechanics of the hip and birth in early Homo. Am J Phys Anthropol. 1995;98(4):527–574. PubMed

Brandt G, et al. Genographic Consortium Ancient DNA reveals key stages in the formation of central European mitochondrial genetic diversity. Science. 2013;342(6155):257–261. PubMed PMC

Haak W, et al. Members of the Genographic Consortium Ancient DNA from European early neolithic farmers reveals their near eastern affinities. PLoS Biol. 2010;8(11):e1000536. PubMed PMC

Brewster C, Meiklejohn C, von Cramon-Taubadel N, Pinhasi R. Craniometric analysis of European Upper Palaeolithic and Mesolithic samples supports discontinuity at the Last Glacial Maximum. Nat Commun. 2014;5:4094. PubMed PMC

von Cramon-Taubadel N, Stock JT, Pinhasi R. Skull and limb morphology differentially track population history and environmental factors in the transition to agriculture in Europe. Proc R Soc Lond B Biol Sci. 2013;280(1767):20131337. PubMed PMC

Seguin-Orlando A, et al. Paleogenomics. Genomic structure in Europeans dating back at least 36,200 years. Science. 2014;346(6213):1113–1118. PubMed

Whittle A. Europe in the Neolithic; The Creation of New Worlds. Cambridge Univ Press; Cambridge, UK: 1996.

Milisauskas S. Early Neolithic, The first farmers in Europe. In: Milisauskas S, editor. European Prehistory: A Survey. Kluwer Academic/Plenum; New York: 2002. pp. 143–192.

Harding AF. The Bronze Age. In: Milisauskas S, editor. European Prehistory: A Survey. Kluwer Academic/Plenum; New York: 2002. pp. 271–334.

Wells P. The Iron Age. In: Milisauskas S, editor. European Prehistory: A Survey. Kluwer Academic/Plenum; New York: 2002. pp. 335–383.

Bakker JA, Kruk J, Lanting AE, Milisauskas S. The earliest evidence of wheeled vehicles in Europe and the Near East. Antiquity. 1999;73(282):778–790.

Ludwig A, et al. Coat color variation at the beginning of horse domestication. Science. 2009;324(5926):485. PubMed PMC

Vilà C, et al. Widespread origins of domestic horse lineages. Science. 2001;291(5503):474–477. PubMed

Ruff CB, Larsen CS. Long bone structural analyses and reconstruction of past mobility: A historical review. In: Carlson K, Marchi D, editors. Mobility: Interpreting Behavior from Skeletal Adaptations and Environmental Interactions. Springer; New York: 2014. pp. 13–29.

Holt BM, et al. Temporal and geographic variation in robusticity. In: Ruff CB, editor. Skeletal Variation and Adaptation in Europeans: Upper Paleolithic to the Twentieth Century. Wiley-Blackwell; New York: in press.

Mosekilde L. Osteoporosis and exercise. Bone. 1995;17(3):193–195. PubMed

Lees B, Molleson T, Arnett TR, Stevenson JC. Differences in proximal femur bone density over two centuries. Lancet. 1993;341(8846):673–675. PubMed

Ekenman I, Eriksson SA, Lindgren JU. Bone density in medieval skeletons. Calcif Tissue Int. 1995;56(5):355–358. PubMed

Poulsen LW, Qvesel D, Brixen K, Vesterby A, Boldsen JL. Low bone mineral density in the femoral neck of medieval women: A result of multiparity? Bone. 2001;28(4):454–458. PubMed

Mays S, Lees B, Stevenson JC. Age-dependent bone loss in the femur in a medieval population. Int J Osteoarchaeol. 1998;8:97–106.

Mays SA. Age-related cortical bone loss in women from a 3rd-4th century AD population from England. Am J Phys Anthropol. 2006;129(4):518–528. PubMed

McEwan JM, Mays S, Blake GM. Measurements of bone mineral density of the radius in a medieval population. Calcif Tissue Int. 2004;74(2):157–161. PubMed

Roberts C, Cox M. Health and Disease in Britain: From Prehistory to the Present Day. Sutton Publishing; Stroud, UK: 2003.

Buikstra JE, Ubelaker DH. Standards for Data Collection from Human Skeletal Remains. Arkansas Archaeological Survey; Fayetteville, AR: 1994.

Ruff CB. Long bone articular and diaphyseal structure in old world monkeys and apes. I: Locomotor effects. Am J Phys Anthropol. 2002;119(4):305–342. PubMed

Sylvester AD, Garofalo E, Ruff C. Technical note: An R program for automating bone cross section reconstruction. Am J Phys Anthropol. 2010;142(4):665–669. PubMed

Ruff CB. 2006 MomentMacro. Available at: www.hopkinsmedicine.org/fae/mmacro.htm. Accessed April 30, 2015.

Ruff CB, et al. Stature and body mass estimation from skeletal remains in the European Holocene. Am J Phys Anthropol. 2012;148(4):601–617. PubMed

Raxter MH, Auerbach BM, Ruff CB. Revision of the Fully technique for estimating statures. Am J Phys Anthropol. 2006;130(3):374–384. PubMed

Ruff CB. Body size, body shape, and long bone strength in modern humans. J Hum Evol. 2000;38(2):269–290. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...