A G-quadruplex-binding compound showing anti-tumour activity in an in vivo model for pancreatic cancer
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
C2259/A16569
Cancer Research UK - United Kingdom
G1001497
Medical Research Council - United Kingdom
MC_PC_12024
Medical Research Council - United Kingdom
21030
Cancer Research UK - United Kingdom
16463
Cancer Research UK - United Kingdom
16569
Cancer Research UK - United Kingdom
PubMed
26077929
PubMed Central
PMC4468576
DOI
10.1038/srep11385
PII: srep11385
Knihovny.cz E-resources
- MeSH
- Gene Expression MeSH
- G-Quadruplexes MeSH
- Transcription, Genetic MeSH
- Imides chemistry pharmacology MeSH
- Injections, Intravenous MeSH
- Humans MeSH
- Mice, Nude MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Pancreatic Neoplasms drug therapy genetics metabolism pathology MeSH
- Naphthalenes chemistry pharmacology MeSH
- Promoter Regions, Genetic * MeSH
- Antineoplastic Agents chemistry pharmacology MeSH
- Proto-Oncogene Proteins c-bcl-2 antagonists & inhibitors chemistry genetics metabolism MeSH
- Proto-Oncogene Proteins p21(ras) genetics metabolism MeSH
- Drug Administration Schedule MeSH
- Molecular Dynamics Simulation MeSH
- Tumor Burden drug effects MeSH
- Xenograft Model Antitumor Assays MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bcl2 protein, mouse MeSH Browser
- Hras protein, mouse MeSH Browser
- Imides MeSH
- Naphthalenes MeSH
- naphthalenediimide MeSH Browser
- Antineoplastic Agents MeSH
- Proto-Oncogene Proteins c-bcl-2 MeSH
- Proto-Oncogene Proteins p21(ras) MeSH
We report here that a tetra-substituted naphthalene-diimide derivative (MM41) has significant in vivo anti-tumour activity against the MIA PaCa-2 pancreatic cancer xenograft model. IV administration with a twice-weekly 15 mg/kg dose produces ca 80% tumour growth decrease in a group of tumour-bearing animals. Two animals survived tumour-free after 279 days. High levels of MM41 are rapidly transported into cell nuclei and were found to accumulate in the tumour. MM41 is a quadruplex-interactive compound which binds strongly to the quadruplexes encoded in the promoter sequences of the BCL-2 and k-RAS genes, both of which are dis-regulated in many human pancreatic cancers. Levels of BCL-2 were reduced by ca 40% in tumours from MM41-treated animals relative to controls, consistent with BCL-2 being a target for MM41. Molecular modelling suggests that MM41 binds to a BCL-2 quadruplex in a manner resembling that previously observed in co-crystal structures with human telomeric quadruplexes. This supports the concept that MM41 (and by implication other quadruplex-targeting small molecules) can bind to quadruplex-forming promoter regions in a number of genes and down-regulate their transcription. We suggest that quadruplexes within those master genes that are up-regulated drivers for particular cancers, may be selective targets for compounds such as MM41.
Central European Institute of Technology Campus Bohunice Kamenice 5 625 00 Brno Czech Republic
UCL Cancer Institute University College London London WC1E 6BT UK
UCL School of Pharmacy University College London London WC1N 1AX UK
See more in PubMed
Vincent A., Herman J., Schulick R., Hruban R. H. & Goggins M. Pancreatic cancer. Lancet 378, 607–620 (2011). PubMed PMC
Matthaei H., Semaan. A. & Hruban R. H. The genetic classification of pancreatic neoplasia. J. Gastroenterol. (2015) 10.1007/s00535-015-1037-4. PubMed DOI
http://www.cancer.org/cancer/pancreaticcancer/detailedguide/pancreatic-cancer-key-statistics. Date of access 06/02/2015.
http://www.cancerresearchuk.org/cancer-info/cancerstats/types/pancreas/incidence/uk-pancreatic-cancer-incidence-statistics.Date of access 06/02/2015.
Sant M. et al. EUROCARE-4. Survival of cancer patients diagnosed in 1995–1999. Results and commentary. Eur. J. Cancer 45, 931–991 (2009). PubMed
Carmichael J. et al. Phase II study of gemcitabine in patients with advanced pancreatic cancer. Brit. J. Cancer 73, 101–105 (1996). PubMed PMC
Slusarczyk M. et al. Application of ProTide technology to gemcitabine: a successful approach to overcome the key cancer resistance mechanisms leads to a new agent (NUC-1031) in clinical development. J. Med. Chem. 57, 1531–1542 (2014). PubMed
Courtin A. et al. Anti-tumour efficacy of capecitabine in a genetically engineered mouse model of pancreatic cancer. PLoS One 8, e67330 (2013). PubMed PMC
Borazanci E. & Von Hoff D. D. Nab-paclitaxel and gemcitabine for the treatment of patients with metastatic pancreatic cancer. Expert Rev. Gastroenterol. Hepatol. 8, 739–747 (2014). PubMed
Burge S., Parkinson G. N., Hazel P., Todd A. K. & Neidle S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 34, 5402–5415 (2006). PubMed PMC
Todd A. K., Johnston M. & Neidle S. Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res. 33, 2901–2907 (2005). PubMed PMC
Huppert J. L. & Balasubramanian S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 33, 2908–2916 (2005). PubMed PMC
Huppert J. L. & Balasubramanian S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 35, 406–413 (2007). PubMed PMC
Bugaut A. & Balasubramanian S. 5’-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res. 40, 4727–4741 (2012). PubMed PMC
Nambiar M., Srivastava M., Gopalakrishnan V., Sankaran S. K. & Raghavan S. C. G-quadruplex structures formed at the HOX11 breakpoint region contribute to its fragility during t(10;14) translocation in T-cell leukemia. Mol. Cell. Biol. 33, 4266–4281 (2013). PubMed PMC
Dong D. W. et al. Association of G-quadruplex forming sequences with human mtDNA deletion breakpoints. BMC Genomics 15, 677 (2014). PubMed PMC
Biffi G., Tannahill D., McCafferty J. & Balasubramanian S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 5, 182–186 (2013). PubMed PMC
Henderson A. et al. Detection of G‐quadruplex DNA in mammalian cells. Nucleic Acids Res. 42, 860–869 (2013). PubMed PMC
Biffi G., Tannahill D., Miller J., Howat W. J. & Balasubramanian S. Elevated levels of G-quadruplex formation in human stomach and liver cancer tissues. PLoS One 9, e102711 (2014). PubMed PMC
Siddiqui-Jain A., Grand C. L., Bearss D. J. & Hurley L. H. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. USA 99, 11593–11598 (2002). PubMed PMC
Balasubramanian S., Hurley L. H. & Neidle S. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat. Rev. Drug Discov. 10, 261–275 (2011). PubMed PMC
Cuenca F. et al. Tri- and tetra-substituted naphthalene diimides as potent G-quadruplex ligands. Bioorg. Med. Chem. Lett. 18, 1668–1673 (2008). PubMed
Gunaratnam M., Cuenca F. & Neidle S, inventors; University College London, assignee. Naphthalene diimide compounds interacting with G-quadruplex regions in DNA. US patent 8796456, 2014 August 14, European patent 2227470, 2104 March 5, Japanese patent 5366968, 2013 August 29.
Gunaratnam M. et al. Targeting human gastrointestinal stromal tumour cells with a quadruplex-binding small molecule. J. Med. Chem. 52, 3774–3783 (2009). PubMed PMC
Hampel S. M., Sidibe A., Gunaratnam M., Riou J.-F. & Neidle S. Tetrasubstituted naphthalene diimide ligands with selectivity for telomeric G-quadruplexes and cancer cells. Bioorg. Med. Chem. Lett. 20, 6459–6463 (2010). PubMed
Gunaratnam M. et al. Targeting pancreatic cancer with a G-quadruplex ligand. Bioorg. Med. Chem. 19, 7151–7157 (2011). PubMed
Collie G. W. et al. Structural basis for telomeric G-quadruplex naphthalene diimide ligand targeting J. Am. Chem. Soc. 134, 2723–2731 (2012). PubMed
Micco M. et al. Structure-based design and evaluation of naphthalene diimide G-quadruplex ligands as telomere targeting agents in pancreatic cancer cells. J. Med. Chem. 56, 2959–2974 (2013). PubMed
Dai J., Chen D., Jones R. A., Hurley L. H. & Yang D. NMR solution structure of the major G-quadruplex structure formed in the human BCL2 promoter region. Nucleic Acids Res. 34, 5133–5144 (2006). PubMed PMC
Agrawal P., Lin C., Mathad R. I., Carver M. & Yang D. The major G-quadruplex formed in the human BCL-2 proximal promoter adopts a parallel structure with a 13-nt loop in K+ solution. J. Amer. Chem. Soc. 136, 1750–1753 (2014). PubMed PMC
Shahid R., Bugaut A. & Balasubramanian S. The BCL-2 5’ untranslated region contains an RNA G-quadruplex-forming motif that modulates protein expression. Biochemistry 49, 8300–8306 (2010). PubMed PMC
Wang X. D. et al. Turning off transcription of the bcl-2 gene by stabilizing the bcl-2 promoter quadruplex with quindoline derivatives. J. Med. Chem. 53, 4390–4398 (2010). PubMed
Wang C. et al. Ruthenium (II) polypyridyl complexes stabilize the bcl-2 promoter quadruplex and induce apoptosis of Hela tumor cells. Biometals 26, 387–402 (2013). PubMed
Kendrick S. et al. The dynamic character of the BCL2 promoter i-motif provides a mechanism for modulation of gene expression by compounds that bind selectively to the alternative DNA hairpin structure. J. Amer. Chem. Soc. 136, 4161–4171 (2014). PubMed PMC
Perez A. et al. Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys. J. 92, 3817–3829 (2007). PubMed PMC
Krepl M. et al. Reference simulations of noncanonical nucleic acids with different chi variants of the AMBER force field: quadruplex DNA, quadruplex RNA and Z-DNA. J. Chem. Theory Comput. 8, 2506–2520 (2012). PubMed PMC
Reed J. E. et al. TRAP-LIG, a modified TRAP assay to quantitate telomerase inhibition by small molecules. Anal. Biochem. 380, 99–105 (2008). PubMed
Burger A. M. et al. A G-quadruplex binding telomerase inhibitor with in vivo anticancer activity. Cancer Res. 65, 1489–1496 (2005). PubMed
Salvati E. et al. Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect. J. Clin. Invest. 117, 3236–3247 (2007). PubMed PMC
Rodriguez R. et al. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat. Chem. Biol. 8, 301–310 (2012). PubMed PMC
Müller S. et al. Pyridostatin analogues promote telomere dysfunction and long-term growth inhibition in human cancer cells. Org. Biomol. Chem. 10, 6537–6546 (2012). PubMed PMC
Campani D. et al. Bcl-2 expression in pancreas development and pancreatic cancer progression. J. Pathol. 194, 444–450 (2001). PubMed
Huang S., Okumura K. & Sinicrope F. A. BH3 mimetic obatoclax enhances TRAIL-mediated apoptosis in human pancreatic cancer cells. Clin. Cancer Res. 15, 150–159 (2009). PubMed PMC
Yuan Y. et al. Gossypol and an HMT G9a inhibitor act in synergy to induce cell death in pancreatic cancer cells. Cell Death Dis. 4, e690 (2013). PubMed PMC
Ocker M. et al. Variants of bcl-2 specific siRNA for silencing antiapoptotic bcl-2 in pancreatic cancer. Gut 54, 1298–1308 (2005). PubMed PMC
Sun H. et al. A newly identified G-quadruplex as a potential target regulating Bcl-2 expression. Biochim. Biophys. Acta 184D, 3052–3057 (2014). PubMed
Prato G., Silvent S., Saka S., Lamberto M. & Kosenkov D. Thermodynamics of binding of di- and tetrasubstituted naphthalene diimide ligands to DNA G-quadruplex. J. Phys. Chem. (2015). 10.1021/jp509637y. PubMed DOI
Nadai M. et al. Assessment of gene promoter G-quadruplex binding and modulation by a naphthalene diimide derivative in tumor cells. Int. J. Oncol. 46, 369–380 (2015). PubMed
Guyen B., Schultes C. M., Hazel P., Mann J. & Neidle S. Synthesis and evaluation of analogues of 10H-indolo[3,2-b]quinoline as G-quadruplex stabilising ligands and potential inhibitors of the enzyme telomerase. Org. Biomol. Chem. 2, 981–988 (2004). PubMed
Stadlbauer P., Krepl M., Cheatham T. E., Koča J. & Šponer J. Structural dynamics of possible late-stage intermediates in folding of quadruplex DNA studied by molecular simulations. Nucleic Acids Res. 41, 7128–7143 (2013). PubMed PMC
Cornell W. D. et al. A 2nd generation force-field for the simulation of proteins, nucleic acids and organic-molecules. J. Amer. Chem. Soc. 117, 5179–5197 (1995).
Joung I. S. & Cheatham T. E. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B112, 9020–9041 (2008). PubMed PMC
Harvey M.J., Giupponi G. & Fabritiis G. D. ACEMD: Accelerating biomolecular dynamics in the microsecond time scale. J. Chem. Theory Comp. 5, 1632–1639 (2009). PubMed
Darden T., York D. & Pedersen L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).
Ryckaert J.-P., Ciccotti G. & Berendsen H. J. C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comp. Phys. 23, 327–341 (1977).
Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F., DiNola A. & Haak J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).
Roe D. R. & Cheatham T. E. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comp. 9, 3084–3095 (2013). PubMed
Humphrey W., Dalke A. & Schulten K. VMD: Visual molecular dynamics. J. Mol. Graphics 14, 33–38 (1996). PubMed
Workman P. et al. Guidelines for the welfare and use of animals in cancer research. Br. J. Cancer 102, 1555–1577 (2010). PubMed PMC
Tomayko M. M. & Reynolds C. P. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother. Pharmacol. 24, 148−154 (1989). PubMed