• This record comes from PubMed

A G-quadruplex-binding compound showing anti-tumour activity in an in vivo model for pancreatic cancer

. 2015 Jun 16 ; 5 () : 11385. [epub] 20150616

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
C2259/A16569 Cancer Research UK - United Kingdom
G1001497 Medical Research Council - United Kingdom
MC_PC_12024 Medical Research Council - United Kingdom
21030 Cancer Research UK - United Kingdom
16463 Cancer Research UK - United Kingdom
16569 Cancer Research UK - United Kingdom

We report here that a tetra-substituted naphthalene-diimide derivative (MM41) has significant in vivo anti-tumour activity against the MIA PaCa-2 pancreatic cancer xenograft model. IV administration with a twice-weekly 15 mg/kg dose produces ca 80% tumour growth decrease in a group of tumour-bearing animals. Two animals survived tumour-free after 279 days. High levels of MM41 are rapidly transported into cell nuclei and were found to accumulate in the tumour. MM41 is a quadruplex-interactive compound which binds strongly to the quadruplexes encoded in the promoter sequences of the BCL-2 and k-RAS genes, both of which are dis-regulated in many human pancreatic cancers. Levels of BCL-2 were reduced by ca 40% in tumours from MM41-treated animals relative to controls, consistent with BCL-2 being a target for MM41. Molecular modelling suggests that MM41 binds to a BCL-2 quadruplex in a manner resembling that previously observed in co-crystal structures with human telomeric quadruplexes. This supports the concept that MM41 (and by implication other quadruplex-targeting small molecules) can bind to quadruplex-forming promoter regions in a number of genes and down-regulate their transcription. We suggest that quadruplexes within those master genes that are up-regulated drivers for particular cancers, may be selective targets for compounds such as MM41.

See more in PubMed

Vincent A., Herman J., Schulick R., Hruban R. H. & Goggins M. Pancreatic cancer. Lancet 378, 607–620 (2011). PubMed PMC

Matthaei H., Semaan. A. & Hruban R. H. The genetic classification of pancreatic neoplasia. J. Gastroenterol. (2015) 10.1007/s00535-015-1037-4. PubMed DOI

http://www.cancer.org/cancer/pancreaticcancer/detailedguide/pancreatic-cancer-key-statistics. Date of access 06/02/2015.

http://www.cancerresearchuk.org/cancer-info/cancerstats/types/pancreas/incidence/uk-pancreatic-cancer-incidence-statistics.Date of access 06/02/2015.

Sant M. et al. EUROCARE-4. Survival of cancer patients diagnosed in 1995–1999. Results and commentary. Eur. J. Cancer 45, 931–991 (2009). PubMed

Carmichael J. et al. Phase II study of gemcitabine in patients with advanced pancreatic cancer. Brit. J. Cancer 73, 101–105 (1996). PubMed PMC

Slusarczyk M. et al. Application of ProTide technology to gemcitabine: a successful approach to overcome the key cancer resistance mechanisms leads to a new agent (NUC-1031) in clinical development. J. Med. Chem. 57, 1531–1542 (2014). PubMed

Courtin A. et al. Anti-tumour efficacy of capecitabine in a genetically engineered mouse model of pancreatic cancer. PLoS One 8, e67330 (2013). PubMed PMC

Borazanci E. & Von Hoff D. D. Nab-paclitaxel and gemcitabine for the treatment of patients with metastatic pancreatic cancer. Expert Rev. Gastroenterol. Hepatol. 8, 739–747 (2014). PubMed

Burge S., Parkinson G. N., Hazel P., Todd A. K. & Neidle S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 34, 5402–5415 (2006). PubMed PMC

Todd A. K., Johnston M. & Neidle S. Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res. 33, 2901–2907 (2005). PubMed PMC

Huppert J. L. & Balasubramanian S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 33, 2908–2916 (2005). PubMed PMC

Huppert J. L. & Balasubramanian S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 35, 406–413 (2007). PubMed PMC

Bugaut A. & Balasubramanian S. 5’-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res. 40, 4727–4741 (2012). PubMed PMC

Nambiar M., Srivastava M., Gopalakrishnan V., Sankaran S. K. & Raghavan S. C. G-quadruplex structures formed at the HOX11 breakpoint region contribute to its fragility during t(10;14) translocation in T-cell leukemia. Mol. Cell. Biol. 33, 4266–4281 (2013). PubMed PMC

Dong D. W. et al. Association of G-quadruplex forming sequences with human mtDNA deletion breakpoints. BMC Genomics 15, 677 (2014). PubMed PMC

Biffi G., Tannahill D., McCafferty J. & Balasubramanian S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 5, 182–186 (2013). PubMed PMC

Henderson A. et al. Detection of G‐quadruplex DNA in mammalian cells. Nucleic Acids Res. 42, 860–869 (2013). PubMed PMC

Biffi G., Tannahill D., Miller J., Howat W. J. & Balasubramanian S. Elevated levels of G-quadruplex formation in human stomach and liver cancer tissues. PLoS One 9, e102711 (2014). PubMed PMC

Siddiqui-Jain A., Grand C. L., Bearss D. J. & Hurley L. H. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. USA 99, 11593–11598 (2002). PubMed PMC

Balasubramanian S., Hurley L. H. & Neidle S. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat. Rev. Drug Discov. 10, 261–275 (2011). PubMed PMC

Cuenca F. et al. Tri- and tetra-substituted naphthalene diimides as potent G-quadruplex ligands. Bioorg. Med. Chem. Lett. 18, 1668–1673 (2008). PubMed

Gunaratnam M., Cuenca F. & Neidle S, inventors; University College London, assignee. Naphthalene diimide compounds interacting with G-quadruplex regions in DNA. US patent 8796456, 2014 August 14, European patent 2227470, 2104 March 5, Japanese patent 5366968, 2013 August 29.

Gunaratnam M. et al. Targeting human gastrointestinal stromal tumour cells with a quadruplex-binding small molecule. J. Med. Chem. 52, 3774–3783 (2009). PubMed PMC

Hampel S. M., Sidibe A., Gunaratnam M., Riou J.-F. & Neidle S. Tetrasubstituted naphthalene diimide ligands with selectivity for telomeric G-quadruplexes and cancer cells. Bioorg. Med. Chem. Lett. 20, 6459–6463 (2010). PubMed

Gunaratnam M. et al. Targeting pancreatic cancer with a G-quadruplex ligand. Bioorg. Med. Chem. 19, 7151–7157 (2011). PubMed

Collie G. W. et al. Structural basis for telomeric G-quadruplex naphthalene diimide ligand targeting J. Am. Chem. Soc. 134, 2723–2731 (2012). PubMed

Micco M. et al. Structure-based design and evaluation of naphthalene diimide G-quadruplex ligands as telomere targeting agents in pancreatic cancer cells. J. Med. Chem. 56, 2959–2974 (2013). PubMed

Dai J., Chen D., Jones R. A., Hurley L. H. & Yang D. NMR solution structure of the major G-quadruplex structure formed in the human BCL2 promoter region. Nucleic Acids Res. 34, 5133–5144 (2006). PubMed PMC

Agrawal P., Lin C., Mathad R. I., Carver M. & Yang D. The major G-quadruplex formed in the human BCL-2 proximal promoter adopts a parallel structure with a 13-nt loop in K+ solution. J. Amer. Chem. Soc. 136, 1750–1753 (2014). PubMed PMC

Shahid R., Bugaut A. & Balasubramanian S. The BCL-2 5’ untranslated region contains an RNA G-quadruplex-forming motif that modulates protein expression. Biochemistry 49, 8300–8306 (2010). PubMed PMC

Wang X. D. et al. Turning off transcription of the bcl-2 gene by stabilizing the bcl-2 promoter quadruplex with quindoline derivatives. J. Med. Chem. 53, 4390–4398 (2010). PubMed

Wang C. et al. Ruthenium (II) polypyridyl complexes stabilize the bcl-2 promoter quadruplex and induce apoptosis of Hela tumor cells. Biometals 26, 387–402 (2013). PubMed

Kendrick S. et al. The dynamic character of the BCL2 promoter i-motif provides a mechanism for modulation of gene expression by compounds that bind selectively to the alternative DNA hairpin structure. J. Amer. Chem. Soc. 136, 4161–4171 (2014). PubMed PMC

Perez A. et al. Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys. J. 92, 3817–3829 (2007). PubMed PMC

Krepl M. et al. Reference simulations of noncanonical nucleic acids with different chi variants of the AMBER force field: quadruplex DNA, quadruplex RNA and Z-DNA. J. Chem. Theory Comput. 8, 2506–2520 (2012). PubMed PMC

Reed J. E. et al. TRAP-LIG, a modified TRAP assay to quantitate telomerase inhibition by small molecules. Anal. Biochem. 380, 99–105 (2008). PubMed

Burger A. M. et al. A G-quadruplex binding telomerase inhibitor with in vivo anticancer activity. Cancer Res. 65, 1489–1496 (2005). PubMed

Salvati E. et al. Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect. J. Clin. Invest. 117, 3236–3247 (2007). PubMed PMC

Rodriguez R. et al. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat. Chem. Biol. 8, 301–310 (2012). PubMed PMC

Müller S. et al. Pyridostatin analogues promote telomere dysfunction and long-term growth inhibition in human cancer cells. Org. Biomol. Chem. 10, 6537–6546 (2012). PubMed PMC

Campani D. et al. Bcl-2 expression in pancreas development and pancreatic cancer progression. J. Pathol. 194, 444–450 (2001). PubMed

Huang S., Okumura K. & Sinicrope F. A. BH3 mimetic obatoclax enhances TRAIL-mediated apoptosis in human pancreatic cancer cells. Clin. Cancer Res. 15, 150–159 (2009). PubMed PMC

Yuan Y. et al. Gossypol and an HMT G9a inhibitor act in synergy to induce cell death in pancreatic cancer cells. Cell Death Dis. 4, e690 (2013). PubMed PMC

Ocker M. et al. Variants of bcl-2 specific siRNA for silencing antiapoptotic bcl-2 in pancreatic cancer. Gut 54, 1298–1308 (2005). PubMed PMC

Sun H. et al. A newly identified G-quadruplex as a potential target regulating Bcl-2 expression. Biochim. Biophys. Acta 184D, 3052–3057 (2014). PubMed

Prato G., Silvent S., Saka S., Lamberto M. & Kosenkov D. Thermodynamics of binding of di- and tetrasubstituted naphthalene diimide ligands to DNA G-quadruplex. J. Phys. Chem. (2015). 10.1021/jp509637y. PubMed DOI

Nadai M. et al. Assessment of gene promoter G-quadruplex binding and modulation by a naphthalene diimide derivative in tumor cells. Int. J. Oncol. 46, 369–380 (2015). PubMed

Guyen B., Schultes C. M., Hazel P., Mann J. & Neidle S. Synthesis and evaluation of analogues of 10H-indolo[3,2-b]quinoline as G-quadruplex stabilising ligands and potential inhibitors of the enzyme telomerase. Org. Biomol. Chem. 2, 981–988 (2004). PubMed

Stadlbauer P., Krepl M., Cheatham T. E., Koča J. & Šponer J. Structural dynamics of possible late-stage intermediates in folding of quadruplex DNA studied by molecular simulations. Nucleic Acids Res. 41, 7128–7143 (2013). PubMed PMC

Cornell W. D. et al. A 2nd generation force-field for the simulation of proteins, nucleic acids and organic-molecules. J. Amer. Chem. Soc. 117, 5179–5197 (1995).

Joung I. S. & Cheatham T. E. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B112, 9020–9041 (2008). PubMed PMC

Harvey M.J., Giupponi G. & Fabritiis G. D. ACEMD: Accelerating biomolecular dynamics in the microsecond time scale. J. Chem. Theory Comp. 5, 1632–1639 (2009). PubMed

Darden T., York D. & Pedersen L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

Ryckaert J.-P., Ciccotti G. & Berendsen H. J. C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comp. Phys. 23, 327–341 (1977).

Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F., DiNola A. & Haak J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

Roe D. R. & Cheatham T. E. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comp. 9, 3084–3095 (2013). PubMed

Humphrey W., Dalke A. & Schulten K. VMD: Visual molecular dynamics. J. Mol. Graphics 14, 33–38 (1996). PubMed

Workman P. et al. Guidelines for the welfare and use of animals in cancer research. Br. J. Cancer 102, 1555–1577 (2010). PubMed PMC

Tomayko M. M. & Reynolds C. P. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother. Pharmacol. 24, 148−154 (1989). PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...