From (p)ppGpp to (pp)pGpp: Characterization of Regulatory Effects of pGpp Synthesized by the Small Alarmone Synthetase of Enterococcus faecalis
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
R01 GM084003
NIGMS NIH HHS - United States
T32 GM007215
NIGMS NIH HHS - United States
T90 DE021985
NIDCR NIH HHS - United States
R01GM084003
NIGMS NIH HHS - United States
PubMed
26124242
PubMed Central
PMC4542164
DOI
10.1128/jb.00324-15
PII: JB.00324-15
Knihovny.cz E-resources
- MeSH
- Bacterial Proteins genetics metabolism MeSH
- Deoxyguanosine analogs & derivatives biosynthesis chemistry MeSH
- Dipeptides biosynthesis chemistry MeSH
- Enterococcus faecalis drug effects enzymology genetics metabolism MeSH
- Stress, Physiological MeSH
- Guanosine Diphosphate metabolism MeSH
- Guanosine Pentaphosphate metabolism MeSH
- Guanosine Tetraphosphate biosynthesis MeSH
- Guanosine Triphosphate metabolism MeSH
- Magnesium MeSH
- Ligases genetics metabolism MeSH
- Molecular Structure MeSH
- Gene Expression Regulation, Enzymologic MeSH
- Gene Expression Regulation, Bacterial MeSH
- Substrate Specificity MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Deoxyguanosine MeSH
- Dipeptides MeSH
- Guanosine Diphosphate MeSH
- Guanosine Pentaphosphate MeSH
- Guanosine Tetraphosphate MeSH
- Guanosine Triphosphate MeSH
- Magnesium MeSH
- Ligases MeSH
- relacin MeSH Browser
UNLABELLED: The bacterial stringent response (SR) is a conserved stress tolerance mechanism that orchestrates physiological alterations to enhance cell survival. This response is mediated by the intracellular accumulation of the alarmones pppGpp and ppGpp, collectively called (p)ppGpp. In Enterococcus faecalis, (p)ppGpp metabolism is carried out by the bifunctional synthetase/hydrolase E. faecalis Rel (RelEf) and the small alarmone synthetase (SAS) RelQEf. Although Rel is the main enzyme responsible for SR activation in Firmicutes, there is emerging evidence that SASs can make important contributions to bacterial homeostasis. Here, we showed that RelQEf synthesizes ppGpp more efficiently than pppGpp without the need for ribosomes, tRNA, or mRNA. In addition to (p)ppGpp synthesis from GDP and GTP, RelQEf also efficiently utilized GMP to form GMP 3'-diphosphate (pGpp). Based on this observation, we sought to determine if pGpp exerts regulatory effects on cellular processes affected by (p)ppGpp. We found that pGpp, like (p)ppGpp, strongly inhibits the activity of E. faecalis enzymes involved in GTP biosynthesis and, to a lesser extent, transcription of rrnB by Escherichia coli RNA polymerase. Activation of E. coli RelA synthetase activity was observed in the presence of both pGpp and ppGpp, while RelQEf was activated only by ppGpp. Furthermore, enzymatic activity of RelQEf is insensitive to relacin, a (p)ppGpp analog developed as an inhibitor of "long" RelA/SpoT homolog (RSH) enzymes. We conclude that pGpp can likely function as a bacterial alarmone with target-specific regulatory effects that are similar to what has been observed for (p)ppGpp. IMPORTANCE: Accumulation of the nucleotide second messengers (p)ppGpp in bacteria is an important signal regulating genetic and physiological networks contributing to stress tolerance, antibiotic persistence, and virulence. Understanding the function and regulation of the enzymes involved in (p)ppGpp turnover is therefore critical for designing strategies to eliminate the protective effects of this molecule. While characterizing the (p)ppGpp synthetase RelQ of Enterococcus faecalis (RelQEf), we found that, in addition to (p)ppGpp, RelQEf is an efficient producer of pGpp (GMP 3'-diphosphate). In vitro analysis revealed that pGpp exerts complex, target-specific effects on processes known to be modulated by (p)ppGpp. These findings provide a new regulatory feature of RelQEf and suggest that pGpp may represent a new member of the (pp)pGpp family of alarmones.
Department of Bacteriology University of Wisconsin Madison Madison Wisconsin USA
See more in PubMed
Cashel M, Gallant J. 1969. Two compounds implicated in the function of the RC gene of Escherichia coli. Nature 221:838–841. doi:10.1038/221838a0. PubMed DOI
Sy J, Lipmann F. 1973. Identification of the synthesis of guanosine tetraphosphate (MS I) as insertion of a pyrophosphoryl group into the 3′-position in guanosine 5′-diphosphate. Proc Natl Acad Sci U S A 70:306–309. doi:10.1073/pnas.70.2.306. PubMed DOI PMC
Potrykus K, Cashel M. 2008. (p)ppGpp: still magical? Annu Rev Microbiol 62:35–51. doi:10.1146/annurev.micro.62.081307.162903. PubMed DOI
Dalebroux ZD, Swanson MS. 2012. ppGpp: magic beyond RNA polymerase. Nat Rev Microbiol 10:203–212. doi:10.1038/nrmicro2720. PubMed DOI
Cashel M, Gentry DR, Hernandez VJ, Vinella D. 1996. The stringent response, p 1458–1496. In Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger AE (ed), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed, vol 1 ASM Press, Washington DC.
Gallant J, Irr J, Cashel M. 1971. The mechanism of amino acid control of guanylate and adenylate biosynthesis. J Biol Chem 246:5812–5816. PubMed
Rojas AM, Ehrenberg M, Andersson SG, Kurland CG. 1984. ppGpp inhibition of elongation factors Tu, G and Ts during polypeptide synthesis. Mol Gen Genet 197:36–45. doi:10.1007/BF00327920. PubMed DOI
Maciag M, Kochanowska M, Lyzen R, Wegrzyn G, Szalewska-Palasz A. 2010. ppGpp inhibits the activity of Escherichia coli DnaG primase. Plasmid 63:61–67. doi:10.1016/j.plasmid.2009.11.002. PubMed DOI
Wang JD, Sanders GM, Grossman AD. 2007. Nutritional control of elongation of DNA replication by (p)ppGpp. Cell 128:865–875. doi:10.1016/j.cell.2006.12.043. PubMed DOI PMC
Kriel A, Bittner AN, Kim SH, Liu K, Tehranchi AK, Zou WY, Rendon S, Chen R, Tu BP, Wang JD. 2012. Direct regulation of GTP homeostasis by (p)ppGpp: a critical component of viability and stress resistance. Mol Cell 48:231–241. doi:10.1016/j.molcel.2012.08.009. PubMed DOI PMC
Hou Z, Cashel M, Fromm HJ, Honzatko RB. 1999. Effectors of the stringent response target the active site of Escherichia coli adenylosuccinate synthetase. J Biol Chem 274:17505–17510. doi:10.1074/jbc.274.25.17505. PubMed DOI
Atkinson GC, Tenson T, Hauryliuk V. 2011. The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLoS One 6:e23479. doi:10.1371/journal.pone.0023479. PubMed DOI PMC
Laffler T, Gallant J. 1974. spoT, a new genetic locus involved in the stringent response in E. coli. Cell 1:27–30. doi:10.1016/0092-8674(74)90151-2. DOI
Haseltine WA, Block R. 1973. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc Natl Acad Sci U S A 70:1564–1568. doi:10.1073/pnas.70.5.1564. PubMed DOI PMC
Vinella D, Albrecht C, Cashel M, D'Ari R. 2005. Iron limitation induces SpoT-dependent accumulation of ppGpp in Escherichia coli. Mol Microbiol 56:958–970. doi:10.1111/j.1365-2958.2005.04601.x. PubMed DOI
Battesti A, Bouveret E. 2006. Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. Mol Microbiol 62:1048–1063. doi:10.1111/j.1365-2958.2006.05442.x. PubMed DOI
Bougdour A, Gottesman S. 2007. ppGpp regulation of RpoS degradation via anti-adaptor protein IraP. Proc Natl Acad Sci U S A 104:12896–12901. doi:10.1073/pnas.0705561104. PubMed DOI PMC
Avarbock D, Avarbock A, Rubin H. 2000. Differential regulation of opposing RelMtb activities by the aminoacylation state of a tRNA.ribosome.mRNA. RelMtb complex. Biochemistry 39:11640–11648. PubMed
Wolz C, Geiger T, Goerke C. 2010. The synthesis and function of the alarmone (p)ppGpp in firmicutes. Int J Med Microbiol 300:142–147. doi:10.1016/j.ijmm.2009.08.017. PubMed DOI
Hogg T, Mechold U, Malke H, Cashel M, Hilgenfeld R. 2004. Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response [corrected]. Cell 117:57–68. doi:10.1016/S0092-8674(04)00260-0. PubMed DOI
Lemos JA, Lin VK, Nascimento MM, Abranches J, Burne RA. 2007. Three gene products govern (p)ppGpp production by Streptococcus mutans. Mol Microbiol 65:1568–1581. doi:10.1111/j.1365-2958.2007.05897.x. PubMed DOI
Nanamiya H, Kasai K, Nozawa A, Yun CS, Narisawa T, Murakami K, Natori Y, Kawamura F, Tozawa Y. 2008. Identification and functional analysis of novel (p)ppGpp synthetase genes in Bacillus subtilis. Mol Microbiol 67:291–304. PubMed
Gaca AO, Colomer-Winter C, Lemos JA. 2015. Many means to a common end: the intricacies of (p)ppGpp metabolism and its control of bacterial homeostasis. J Bacteriol 197:1146–1156. doi:10.1128/JB.02577-14. PubMed DOI PMC
Geiger T, Kastle B, Gratani FL, Goerke C, Wolz C. 2014. Two small (p)ppGpp synthases in Staphylococcus aureus mediate tolerance against cell envelope stress conditions. J Bacteriol 196:894–902. doi:10.1128/JB.01201-13. PubMed DOI PMC
Gaca AO, Abranches J, Kajfasz JK, Lemos JA. 2012. Global transcriptional analysis of the stringent response in Enterococcus faecalis. Microbiology 158:1994–2004. doi:10.1099/mic.0.060236-0. PubMed DOI PMC
Natori Y, Tagami K, Murakami K, Yoshida S, Tanigawa O, Moh Y, Masuda K, Wada T, Suzuki S, Nanamiya H, Tozawa Y, Kawamura F. 2009. Transcription activity of individual rrn operons in Bacillus subtilis mutants deficient in (p)ppGpp synthetase genes, relA, yjbM, and ywaC. J Bacteriol 191:4555–4561. doi:10.1128/JB.00263-09. PubMed DOI PMC
Kim JN, Ahn SJ, Seaton K, Garrett S, Burne RA. 2012. Transcriptional organization and physiological contributions of the relQ operon of Streptococcus mutans. J Bacteriol 194:1968–1978. doi:10.1128/JB.00037-12. PubMed DOI PMC
Gaca AO, Kajfasz JK, Miller JH, Liu K, Wang JD, Abranches J, Lemos JA. 2013. Basal levels of (p)ppGpp in Enterococcus faecalis: the magic beyond the stringent response. mBio 4(5):e00646-13. doi:10.1128/mBio.00646-13. PubMed DOI PMC
Frank KL, Colomer-Winter C, Grindle SM, Lemos JA, Schlievert PM, Dunny GM. 2014. Transcriptome analysis of Enterococcus faecalis during mammalian infection shows cells undergo adaptation and exist in a stringent response state. PLoS One 9:e115839. doi:10.1371/journal.pone.0115839. PubMed DOI PMC
Seaton K, Ahn SJ, Sagstetter AM, Burne RA. 2011. A transcriptional regulator and ABC transporters link stress tolerance, (p)ppGpp, and genetic competence in Streptococcus mutans. J Bacteriol 193:862–874. doi:10.1128/JB.01257-10. PubMed DOI PMC
Abranches J, Martinez AR, Kajfasz JK, Chavez V, Garsin DA, Lemos JA. 2009. The molecular alarmone (p)ppGpp mediates stress responses, vancomycin tolerance, and virulence in Enterococcus faecalis. J Bacteriol 191:2248–2256. doi:10.1128/JB.01726-08. PubMed DOI PMC
Mechold U, Cashel M, Steiner K, Gentry D, Malke H. 1996. Functional analysis of a relA/spoT gene homolog from Streptococcus equisimilis. J Bacteriol 178:1401–1411. PubMed PMC
Stols L, Gu M, Dieckman L, Raffen R, Collart FR, Donnelly MI. 2002. A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site. Protein Expr Purif 25:8–15. doi:10.1006/prep.2001.1603. PubMed DOI
Potrykus K, Vinella D, Murphy H, Szalewska-Palasz A, D'Ari R, Cashel M. 2006. Antagonistic regulation of Escherichia coli ribosomal RNA rrnB P1 promoter activity by GreA and DksA. J Biol Chem 281:15238–15248. doi:10.1074/jbc.M601531200. PubMed DOI
Pao CC, Gallant J. 1979. A new nucleotide involved in the stringent response in Escherichia coli. Guanosine 5′-diphosphate-3′-monophosphate. J Biol Chem 254:688–692. PubMed
Shyp V, Tankov S, Ermakov A, Kudrin P, English BP, Ehrenberg M, Tenson T, Elf J, Hauryliuk V. 2012. Positive allosteric feedback regulation of the stringent response enzyme RelA by its product. EMBO Rep 13:835–839. doi:10.1038/embor.2012.106. PubMed DOI PMC
Hamel E, Cashel M. 1973. Role of guanine nucleotides in protein synthesis. Elongation factor G and guanosine 5′-triphosphate,3′-diphosphate. Proc Natl Acad Sci U S A 70:3250–3254. PubMed PMC
Ooga T, Ohashi Y, Kuramitsu S, Koyama Y, Tomita M, Soga T, Masui R. 2009. Degradation of ppGpp by nudix pyrophosphatase modulates the transition of growth phase in the bacterium Thermus thermophilus. J Biol Chem 284:15549–15556. doi:10.1074/jbc.M900582200. PubMed DOI PMC
Keasling JD, Bertsch L, Kornberg A. 1993. Guanosine pentaphosphate phosphohydrolase of Escherichia coli is a long-chain exopolyphosphatase. Proc Natl Acad Sci U S A 90:7029–7033. doi:10.1073/pnas.90.15.7029. PubMed DOI PMC
Choi MY, Wang Y, Wong LL, Lu BT, Chen WY, Huang JD, Tanner JA, Watt RM. 2012. The two PPX-GppA homologues from Mycobacterium tuberculosis have distinct biochemical activities. PLoS One 7:e42561. doi:10.1371/journal.pone.0042561. PubMed DOI PMC
Murdeshwar MS, Chatterji D. 2012. MS_RHII-RSD, a dual-function RNase HII-(p)ppGpp synthetase from Mycobacterium smegmatis. J Bacteriol 194:4003–4014. doi:10.1128/JB.00258-12. PubMed DOI PMC
Herries DG. 1985. Enzyme structure and mechanism (2nd ed). Biochem Ed 13:146.
Sajish M, Kalayil S, Verma SK, Nandicoori VK, Prakash B. 2009. The significance of EXDD and RXKD motif conservation in Rel proteins. J Biol Chem 284:9115–9123. doi:10.1074/jbc.M807187200. PubMed DOI PMC
Sajish M, Tiwari D, Rananaware D, Nandicoori VK, Prakash B. 2007. A charge reversal differentiates (p)ppGpp synthesis by monofunctional and bifunctional Rel proteins. J Biol Chem 282:34977–34983. doi:10.1074/jbc.M704828200. PubMed DOI
Mechold U, Murphy H, Brown L, Cashel M. 2002. Intramolecular regulation of the opposing (p)ppGpp catalytic activities of Rel(Seq), the Rel/Spo enzyme from Streptococcus equisimilis. J Bacteriol 184:2878–2888. doi:10.1128/JB.184.11.2878-2888.2002. PubMed DOI PMC
Nishino T, Gallant J, Shalit P, Palmer L, Wehr T. 1979. Regulatory nucleotides involved in the Rel function of Bacillus subtilis. J Bacteriol 140:671–679. PubMed PMC
Cashel M, Kalbacher B. 1970. The control of ribonucleic acid synthesis in Escherichia coli. V. Characterization of a nucleotide associated with the stringent response. J Biol Chem 245:2309–2318. PubMed
Avarbock A, Avarbock D, Teh JS, Buckstein M, Wang ZM, Rubin H. 2005. Functional regulation of the opposing (p)ppGpp synthetase/hydrolase activities of RelMtb from Mycobacterium tuberculosis. Biochemistry 44:9913–9923. doi:10.1021/bi0505316. PubMed DOI
Gentry D, Li T, Rosenberg M, McDevitt D. 2000. The rel gene is essential for in vitro growth of Staphylococcus aureus. J Bacteriol 182:4995–4997. doi:10.1128/JB.182.17.4995-4997.2000. PubMed DOI PMC
Srivatsan A, Han Y, Peng J, Tehranchi AK, Gibbs R, Wang JD, Chen R. 2008. High-precision, whole-genome sequencing of laboratory strains facilitates genetic studies. PLoS Genet 4:e1000139. doi:10.1371/journal.pgen.1000139. PubMed DOI PMC
Liu K, Myers AR, Pisithkul T, Claas KR, Satyshur KA, Amador-Noguez D, Keck JL, Wang JD. 2015. Molecular mechanism and evolution of guanylate kinase regulation by (p)ppGpp. Mol Cell 57:735–749. doi:10.1016/j.molcel.2014.12.037. PubMed DOI PMC
Paul BJ, Barker MM, Ross W, Schneider DA, Webb C, Foster JW, Gourse RL. 2004. DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell 118:311–322. doi:10.1016/j.cell.2004.07.009. PubMed DOI
Lemke JJ, Sanchez-Vazquez P, Burgos HL, Hedberg G, Ross W, Gourse RL. 2011. Direct regulation of Escherichia coli ribosomal protein promoters by the transcription factors ppGpp and DksA. Proc Natl Acad Sci U S A 108:5712–5717. doi:10.1073/pnas.1019383108. PubMed DOI PMC
Mechold U, Potrykus K, Murphy H, Murakami KS, Cashel M. 2013. Differential regulation by ppGpp versus pppGpp in Escherichia coli. Nucleic Acids Res 41:6175–6189. doi:10.1093/nar/gkt302. PubMed DOI PMC
Dalebroux ZD, Svensson SL, Gaynor EC, Swanson MS. 2010. ppGpp conjures bacterial virulence. Microbiol Mol Biol. Rev 74:171–199. doi:10.1128/MMBR.00046-09. PubMed DOI PMC
Maisonneuve E, Castro-Camargo M, Gerdes K. 2013. (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell 154:1140–1150. doi:10.1016/j.cell.2013.07.048. PubMed DOI
Amato SM, Orman MA, Brynildsen MP. 2013. Metabolic control of persister formation in Escherichia coli. Mol Cell 50:475–487. doi:10.1016/j.molcel.2013.04.002. PubMed DOI
Wexselblatt E, Oppenheimer-Shaanan Y, Kaspy I, London N, Schueler-Furman O, Yavin E, Glaser G, Katzhendler J, Ben-Yehuda S. 2012. Relacin, a novel antibacterial agent targeting the stringent response. PLoS Pathog 8:e1002925. doi:10.1371/journal.ppat.1002925. PubMed DOI PMC
Cashel M. 1975. Regulation of bacterial ppGpp and pppGpp. Annu Rev Microbiol 29:301–318. doi:10.1146/annurev.mi.29.100175.001505. PubMed DOI
Atkinson GC, Hauryliuk V. 2012. Evolution and function of the RelA/SpoT homologue (RSH) proteins. John Wiley & Sons, Ltd., New York, NY.
Pao CC, Dyess BT. 1981. Effect of unusual guanosine nucleotides on the activities of some Escherichia coli cellular enzymes. Biochim Biophys Acta 677:358–362. doi:10.1016/0304-4165(81)90247-6. PubMed DOI
Crosse AM, Greenway DL, England RR. 2000. Accumulation of ppGpp and ppGp in Staphylococcus aureus 8325-4 following nutrient starvation. Lett Appl Microbiol 31:332–337. doi:10.1046/j.1472-765x.2000.00822.x. PubMed DOI
Cochran JW, Byrne RW. 1974. Isolation and properties of a ribosome-bound factor required for ppGpp and ppGpp synthesis in Escherichia coli. J Biol Chem 249:353–360. PubMed
Wexselblatt E, Kaspy I, Glaser G, Katzhendler J, Yavin E. 2013. Design, synthesis and structure-activity relationship of novel Relacin analogs as inhibitors of Rel proteins. Eur J Med Chem 70:497–504. doi:10.1016/j.ejmech.2013.10.036. PubMed DOI
Das B, Pal RR, Bag S, Bhadra RK. 2009. Stringent response in Vibrio cholerae: genetic analysis of spoT gene function and identification of a novel (p)ppGpp synthetase gene. Mol Microbiol 72:380–398. doi:10.1111/j.1365-2958.2009.06653.x. PubMed DOI
Dasgupta S, Basu P, Pal RR, Bag S, Bhadra RK. 2014. Genetic and mutational characterization of the small alarmone synthetase gene relV of Vibrio cholerae. Microbiology 160:1855–1866. doi:10.1099/mic.0.079319-0. PubMed DOI
Jelenc PC, Kurland CG. 1979. Nucleoside triphosphate regeneration decreases the frequency of translation errors. Proc Natl Acad Sci U S A 76:3174–3178. doi:10.1073/pnas.76.7.3174. PubMed DOI PMC
The alarmones (p)ppGpp are part of the heat shock response of Bacillus subtilis
Molecular mutagenesis of ppGpp: turning a RelA activator into an inhibitor