Multilocus Sequence Analysis of Clinical "Candidatus Neoehrlichia mikurensis" Strains from Europe
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26157152
PubMed Central
PMC4572549
DOI
10.1128/jcm.00880-15
PII: JCM.00880-15
Knihovny.cz E-zdroje
- MeSH
- Anaplasmataceae klasifikace genetika izolace a purifikace MeSH
- esenciální geny MeSH
- fylogeneze MeSH
- genetická variace * MeSH
- genotyp * MeSH
- infekce bakteriemi čeledi Anaplasmataceae epidemiologie mikrobiologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- molekulární epidemiologie metody MeSH
- multilokusová sekvenční typizace metody MeSH
- RNA ribozomální 16S genetika MeSH
- senioři MeSH
- shluková analýza MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Německo epidemiologie MeSH
- Švédsko epidemiologie MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
"Candidatus Neoehrlichia mikurensis" is the tick-borne agent of neoehrlichiosis, an infectious disease that primarily affects immunocompromised patients. So far, the genetic variability of "Ca. Neoehrlichia" has been studied only by comparing 16S rRNA genes and groEL operon sequences. We describe the development and use of a multilocus sequence analysis (MLSA) protocol to characterize the genetic diversity of clinical "Ca. Neoehrlichia" strains in Europe and their relatedness to other species within the Anaplasmataceae family. Six genes were selected: ftsZ, clpB, gatB, lipA, groEL, and 16S rRNA. Each MLSA locus was amplified by real-time PCR, and the PCR products were sequenced. Phylogenetic trees of MLSA locus relatedness were constructed from aligned sequences. Blood samples from 12 patients with confirmed "Ca. Neoehrlichia" infection from Sweden (n = 9), the Czech Republic (n = 2), and Germany (n = 1) were analyzed with the MLSA protocol. Three of the Swedish strains exhibited identical lipA sequences, while the lipA sequences of the strains from the other nine patients were identical to each other. One of the Czech strains had one differing nucleotide in the clpB sequence from the sequences of the other 11 strains. All 12 strains had identical sequences for the genes 16S rRNA, ftsZ, gatB, and groEL. According to the MLSA, among the Anaplasmataceae, "Ca. Neoehrlichia" is most closely related to Ehrlichia ruminantium, less so to Anaplasma phagocytophilum, and least to Wolbachia endosymbionts. To conclude, three sequence types of infectious "Ca. Neoehrlichia" were identified: one in the west of Sweden, one in the Czech Republic, and one spread throughout Europe.
Department of Clinical Sciences Section of Rheumatology Lund University Lund Sweden
Department of Hematology and Coagulation Sahlgrenska University Hospital Göteborg Sweden
Department of Infectious Diseases Skaraborg Hospital Skövde Sweden
Department of Medicine Kungälv Hospital Kungälv Sweden
Laboratory for Molecular Diagnostics CHAMBON Laboratories Prague Czech Republic
Zobrazit více v PubMed
Kawahara M, Rikihisa Y, Isogai E, Takahashi M, Misumi H, Suto C, Shibata S, Zhang C, Tsuji M. 2004. Ultrastructure and phylogenetic analysis of ‘Candidatus Neoehrlichia mikurensis’ in the family Anaplasmataceae, isolated from wild rats and found in Ixodes ovatus ticks. Int J Syst Evol Microbiol 54:1837–1843. doi:10.1099/ijs.0.63260-0. PubMed DOI
Schouls LM, Van De Pol I, Rijpkema SG, Schot CS. 1999. Detection and identification of Ehrlichia, Borrelia burgdorferi sensu lato, and Bartonella species in Dutch Ixodes ricinus ticks. J Clin Microbiol 37:2215–2222. PubMed PMC
Andersson M, Raberg L. 2011. Wild rodents and novel human pathogen Candidatus Neoehrlichia mikurensis, Southern Sweden. Emerg Infect Dis 17:1716–1718. doi:10.3201/eid1709.101058. PubMed DOI PMC
Silaghi C, Woll D, Mahling M, Pfister K, Pfeffer M. 2012. Candidatus Neoehrlichia mikurensis in rodents in an area with sympatric existence of the hard ticks Ixodes ricinus and Dermacentor reticulatus, Germany. Parasit Vectors 5:285–292. doi:10.1186/1756-3305-5-285. PubMed DOI PMC
Vayssier-Taussat M, Le Rhun D, Buffet JP, Maaoui N, Galan M, Guivier E, Charbonnel N, Cosson JF. 2012. Candidatus Neoehrlichia mikurensis in bank voles, France. Emerg Infect Dis 18:2063–2065. doi:10.3201/eid1812.120846. PubMed DOI PMC
Derdakova M, Vaclav R, Pangracova-Blanarova L, Selyemova D, Koci J, Walder G, Spitalska E. 2014. Candidatus Neoehrlichia mikurensis and its co-circulation with Anaplasma phagocytophilum in Ixodes ricinus ticks across ecologically different habitats of Central Europe. Parasit Vectors 7:160. doi:10.1186/1756-3305-7-160. PubMed DOI PMC
Jahfari S, Fonville M, Hengeveld P, Reusken C, Scholte EJ, Takken W, Heyman P, Medlock JM, Heylen D, Kleve J, Sprong H. 2012. Prevalence of Neoehrlichia mikurensis in ticks and rodents from North-west Europe. Parasit Vectors 5:74–83. doi:10.1186/1756-3305-5-74. PubMed DOI PMC
Michelet L, Delannoy S, Devillers E, Umhang G, Aspan A, Juremalm M, Chirico J, van der Wal FJ, Sprong H, Boye Pihl TP, Klitgaard K, Bodker R, Fach P, Moutailler S. 2014. High-throughput screening of tick-borne pathogens in Europe. Front Cell Infect Microbiol 4:103. PubMed PMC
Palomar AM, Garcia-Alvarez L, Santibanez S, Portillo A, Oteo JA. 2014. Detection of tick-borne ‘Candidatus Neoehrlichia mikurensis’ and Anaplasma phagocytophilum in Spain in 2013. Parasit Vectors 7:57. doi:10.1186/1756-3305-7-57. PubMed DOI PMC
Welinder-Olsson C, Kjellin E, Vaht K, Jacobsson S, Wenneras C. 2010. First case of human “Candidatus Neoehrlichia mikurensis” infection in a febrile patient with chronic lymphocytic leukemia. J Clin Microbiol 48:1956–1959. doi:10.1128/JCM.02423-09. PubMed DOI PMC
Maurer FP, Keller PM, Beuret C, Joha C, Achermann Y, Gubler J, Bircher D, Karrer U, Fehr J, Zimmerli L, Bloemberg GV. 2013. Close geographic association of human neoehrlichiosis and tick populations carrying “Candidatus Neoehrlichia mikurensis” in Eastern Switzerland. J Clin Microbiol 51:169–176. doi:10.1128/JCM.01955-12. PubMed DOI PMC
Grankvist A, Andersson PO, Mattsson M, Sender M, Vaht K, Hoper L, Sakiniene E, Trysberg E, Stenson M, Fehr J, Pekova S, Bogdan C, Bloemberg G, Wenneras C. 2014. Infections with the tick-borne bacterium “Candidatus Neoehrlichia mikurensis” mimic noninfectious conditions in patients with B cell malignancies or autoimmune diseases. Clin Infect Dis 58:1716–1722. doi:10.1093/cid/ciu189. PubMed DOI
Welc-Faleciak R, Sinski E, Kowalec M, Zajkowska J, Pancewicz SA. 2014. Asymptomatic “Candidatus Neoehrlichia mikurensis” infections in immunocompetent humans. J Clin Microbiol 52:3072–3074. doi:10.1128/JCM.00741-14. PubMed DOI PMC
Li H, Jiang JF, Liu W, Zheng YC, Huo QB, Tang K, Zuo SY, Liu K, Jiang BG, Yang H, Cao WC. 2012. Human infection with Candidatus Neoehrlichia mikurensis, China. Emerg Infect Dis 18:1636–1639. doi:10.3201/eid1810.120594. PubMed DOI PMC
Murray RG, Stackebrandt E. 1995. Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. Int J Syst Bacteriol 45:186–187. doi:10.1099/00207713-45-1-186. PubMed DOI
Schleifer KH. 2009. Classification of bacteria and archaea: past, present and future. Syst Appl Microbiol 32:533–542. doi:10.1016/j.syapm.2009.09.002. PubMed DOI
Fehr JS, Bloemberg GV, Ritter C, Hombach M, Luscher TF, Weber R, Keller PM. 2010. Septicemia caused by tick-borne bacterial pathogen Candidatus Neoehrlichia mikurensis. Emerg Infect Dis 16:1127–1129. doi:10.3201/eid1607.091907. PubMed DOI PMC
Li H, Jiang J, Tang F, Sun Y, Li Z, Zhang W, Gong Z, Liu K, Yang H, Liu W, Cao W. 2013. Wide distribution and genetic diversity of “Candidatus Neoehrlichia mikurensis” in rodents from China. Appl Environ Microbiol 79:1024–1027. doi:10.1128/AEM.02917-12. PubMed DOI PMC
Rar VA, Epikhina TI, Livanova NN, Panov VV, Doroshenko EK, Pukhovskaia NM, Vysochina NP, Ivanov LI. 2011. Study of the heterogeneity of 16s rRNA gene and groESL operone in the DNA samples of Anaplasma phagocytophilum, Ehrlichia muris, and “Candidatus Neoehrlichia mikurensis” determined in the Ixodes persulcatus ticks in the area of Urals, Siberia, and far east of Russia. Mol Gen Mikrobiol Virusol 2:17–23. (In Russian.) PubMed
von Loewenich FD, Geissdorfer W, Disque C, Matten J, Schett G, Sakka SG, Bogdan C. 2010. Detection of “Candidatus Neoehrlichia mikurensis” in two patients with severe febrile illnesses: evidence for a European sequence variant. J Clin Microbiol 48:2630–2635. doi:10.1128/JCM.00588-10. PubMed DOI PMC
Goebel BM, Stackebrandt E. 1994. Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl Environ Microbiol 60:1614–1621. PubMed PMC
Martens M, Dawyndt P, Coopman R, Gillis M, De Vos P, Willems A. 2008. Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 58:200–214. doi:10.1099/ijs.0.65392-0. PubMed DOI
Widerstrom M, Wistrom J, Sjostedt A, Monsen T. 2012. Coagulase-negative staphylococci: update on the molecular epidemiology and clinical presentation, with a focus on Staphylococcus epidermidis and Staphylococcus saprophyticus. Eur J Clin Microbiol Infect Dis 31:7–20. doi:10.1007/s10096-011-1270-6. PubMed DOI
Andreasson K, Jonsson G, Lindell P, Gulfe A, Ingvarsson R, Lindqvist E, Saxne T, Grankvist A, Wenneras C, Marsal J. 2015. Recurrent fever caused by Candidatus Neoehrlichia mikurensis in a rheumatoid arthritis patient treated with rituximab. Rheumatology (Oxford) 54:369–371. doi:10.1093/rheumatology/keu441. PubMed DOI
Pekova S, Vydra J, Kabickova H, Frankova S, Haugvicova R, Mazal O, Cmejla R, Hardekopf DW, Jancuskova T, Kozak T. 2011. Candidatus Neoehrlichia mikurensis infection identified in 2 hematooncologic patients: benefit of molecular techniques for rare pathogen detection. Diagn Microbiol Infect Dis 69:266–270. doi:10.1016/j.diagmicrobio.2010.10.004. PubMed DOI
Adakal H, Meyer DF, Carasco-Lacombe C, Pinarello V, Allegre F, Huber K, Stachurski F, Morand S, Martinez D, Lefrancois T, Vachiery N, Frutos R. 2009. MLST scheme of Ehrlichia ruminantium: genomic stasis and recombination in strains from Burkina-Faso. Infect Genet Evol 9:1320–1328. doi:10.1016/j.meegid.2009.08.003. PubMed DOI
Baldo L, Dunning Hotopp JC, Jolley KA, Bordenstein SR, Biber SA, Choudhury RR, Hayashi C, Maiden MC, Tettelin H, Werren JH. 2006. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol 72:7098–7110. doi:10.1128/AEM.00731-06. PubMed DOI PMC
Skovbjerg S, Welinder-Olsson C, Kondori N, Kjellin E, Nowrouzian F, Wold AE, Stockelberg D, Larsson P, Wenneras C. 2009. Optimization of the detection of microbes in blood from immunocompromised patients with haematological malignancies. Clin Microbiol Infect 15:680–683. doi:10.1111/j.1469-0691.2009.02796.x. PubMed DOI
Brooksbank C, Bergman MT, Apweiler R, Birney E, Thornton J. 2014. The European Bioinformatics Institute's data resources 2014. Nucleic Acids Res 42:D18–D25. doi:10.1093/nar/gkt1206. PubMed DOI PMC
Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG. 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95:3140–3145. doi:10.1073/pnas.95.6.3140. PubMed DOI PMC
Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P, Vancanneyt M, Swings J. 2005. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151:2141–2150. doi:10.1099/mic.0.27840-0. PubMed DOI
Young JM, Park DC, Shearman HM, Fargier E. 2008. A multilocus sequence analysis of the genus Xanthomonas. Syst Appl Microbiol 31:366–377. doi:10.1016/j.syapm.2008.06.004. PubMed DOI