• This record comes from PubMed

Drivers of temporal changes in temperate forest plant diversity vary across spatial scales

. 2015 Oct ; 21 (10) : 3726-37. [epub] 20150727

Language English Country England, Great Britain Media print-electronic

Document type Journal Article, Meta-Analysis, Research Support, Non-U.S. Gov't

Grant support
278065 European Research Council - International

Global biodiversity is affected by numerous environmental drivers. Yet, the extent to which global environmental changes contribute to changes in local diversity is poorly understood. We investigated biodiversity changes in a meta-analysis of 39 resurvey studies in European temperate forests (3988 vegetation records in total, 17-75 years between the two surveys) by assessing the importance of (i) coarse-resolution (i.e., among sites) vs. fine-resolution (i.e., within sites) environmental differences and (ii) changing environmental conditions between surveys. Our results clarify the mechanisms underlying the direction and magnitude of local-scale biodiversity changes. While not detecting any net local diversity loss, we observed considerable among-site variation, partly explained by temporal changes in light availability (a local driver) and density of large herbivores (a regional driver). Furthermore, strong evidence was found that presurvey levels of nitrogen deposition determined subsequent diversity changes. We conclude that models forecasting future biodiversity changes should consider coarse-resolution environmental changes, account for differences in baseline environmental conditions and for local changes in fine-resolution environmental conditions.

Alterra Research Institute Wageningen UR P O Box 47 NL 6700 AA Wageningen The Netherlands

Beechwood House St Briavels Common Lydney Gloucestershire GL15 6SL United Kingdom

Białowieża National Park Park Pałacowy 11 PL 17 230 Białowieża Poland

Biodiversity Research Systematic Botany Institute of Biochemistry and Biology University of Potsdam Maulbeerallee 1 D 14471 Potsdam Germany

BIOGECO UMR1202 Université de Bordeaux F 33615 Pessac France

Botany Department and Trinity Centre for Biodiversity Research School of Natural Sciences Trinity College the University of Dublin College Green Dublin 2 Ireland

Department of Biology Terrestrial Ecology Unit Ghent University K L Ledeganckstraat 35 B 9000 Ghent Belgium

Department of Botany and Zoology Masaryk University Kotlářská 2 CZ 611 37 Brno Czech Republic

Department of Botany Faculty of Science Palacký University Šlechtitelů 11 CZ 783 71 Olomouc Czech Republic

Department of Earth and Environmental Sciences Division of Forest Nature and Landscape KU Leuven Celestijnenlaan 200E B 3001 Leuven Belgium

Department of Ecology and Ecosystem management TU München Hans Carl von Carlowitz Platz 2 D 85350 Freising Germany

Department of GIS and Remote Sensing Institute of Botany Czech Academy of Sciences Zámek 1 CZ 252 43 Průhonice Czech Republic

Department of Plant Sciences University of Oxford South Parks Road Oxford OX1 3RB UK

Department of Plant Systematics Ecology and Theoretical Biology Institute of Biology L Eötvös University Pázmány sétány 1 c H 1117 Budapest Hungary

Department of Vegetation and Phytodiversity Analysis Albrecht von Haller Institute for Plant Sciences Georg August University Göttingen Untere Karspüle 2 D 37073 Göttingen Germany

Department of Vegetation Ecology Institute of Botany Czech Academy of Sciences Lidická 25 27 CZ 602 00 Brno Czech Republic

Department Silviculture and Forest Ecology of the Temperate Zones Burckhardt Institute Georg August University Göttingen Büsgenweg 1 D 37077 Göttingen Germany

Ecologie et Dynamique des Systèmes Anthropisés Jules Verne University of Picardie 1 rue des Louvels F 80037 Amiens Cedex France

Ecosystem Research and Environmental Information Management Environment Agency Austria Spittelauer Lände 5 A 1090 Wien Austria

Faculty of Biology Białowieża Geobotanical Station University of Warsaw ul Sportowa 19 PL 17 230 Białowieża Poland

Faculty of Forestry Technical University in Zvolen T G Masaryka 24 SK 960 53 Zvolen Slovak Republic

Forest and Nature Lab Ghent University Geraardsbergsesteenweg 267 B 9090 Gontrode Melle Belgium

Forest Research Institute Zvolen National Forest Centre T G Masaryka 22 SK 960 52 Zvolen Slovak Republic

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Deutscher Platz 5e D 04103 Leipzig Germany

INRA UMR 1202 BIOGECO F 33610 Cestas France

Institute for Biology University of Leipzig Johannisallee 21 D 04103 Leipzig Germany

Institute of Biochemistry and Biology University of Potsdam Maulbeerallee 2 D 14469 Potsdam Germany

Institute of Ecology Friedrich Schiller University Jena Dornburger Str 159 D 07743 Jena Germany

Institute of Land Use Systems Leibniz Centre for Agricultural Landscape Research Eberswalder Straße 84 D 15374 Müncheberg Germany

Research Institute for Nature and Forest Kliniekstraat 25 B 1070 Brussels Belgium

Southern Swedish Forest Research Centre Swedish University of Agricultural Sciences Box 49 S 23053 Alnarp Sweden

See more in PubMed

Arkle RS, Pilliod DS, Hanser SE, et al. Quantifying restoration effectiveness using multi-scale habitat models: implications for sage-grouse in the Great Basin. Ecosphere. 2014;5 art31.

Baeten L, Bauwens B, De Schrijver A, et al. Herb layer changes (1954-2000) related to the conversion of coppice-with-standards forest and soil acidification. Applied Vegetation Science. 2009;12:187–197.

Bernhardt-Römermann M, Kudernatsch T, Pfadenhauer J, Kirchner M, Jakobi G, Fischer A. Long-term effects of nitrogen-deposition on vegetation in a deciduous forest near Munich, Germany. Applied Vegetation Science. 2007;10:399–406.

Bernhardt-Römermann M, Römermann C, Pillar VD, Kudernatsch T, Fischer A. High functional diversity is related to high nitrogen availability in a deciduous forest – Evidence from a functional trait approach. Folia Geobotanica. 2010;45:111–124.

Bertrand R, Lenoir J, Piedallu C, et al. Changes in plant community composition lag behind climate warming in lowland forests. Nature. 2011;479:517–520. PubMed

Bobbink R, Hicks K, Galloway J, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications. 2010;20:30–59. PubMed

Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2. Ed. Hillsdale: Lawrence Erlbaum Associates; 1988.

Crawley MJ. The R Book. Chichester: Wiley & Sons; 2007.

Dayton PK, Tegner MJ, Edwards PB, Riser KL. Sliding baselines, ghosts, and reduced expectations in kelp forest communities. Ecological Applications. 1998;8:309–322.

De Frenne P, Rodriguez-Sanchez F, Coomes DA, et al. Microclimate moderates plant responses to macroclimate warming. Proceedings of the National Academy of Sciences of the United States of America. 2013;110:18561–18565. PubMed PMC

Decocq G, Aubert M, Dupont F, et al. Plant diversity in a managed temperate deciduous forest: understorey response to two silvicultural systems. Journal of Applied Ecology. 2004;41:1065–1079.

Dirnböck T, Grandin U, Bernhardt-Römermann M, et al. Forest floor vegetation response to nitrogen deposition in Europe. Global Change Biology. 2014;20:429–440. PubMed

Dornelas M, Gotelli NJ, Mcgill B, Shimadzu H, Moyes F, Sievers C, Magurran AE. Assemblage Time Series Reveal Biodiversity Change but Not Systematic Loss. Science. 2014;344:296–299. PubMed

Ellenberg H, Weber HE, Düll R, Wirth V, Werner W. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica. (3 ed) 2001;18:1–262.

Fao/Iiasa/Isric/Isscas/Jrc. Harmonized World Soil Database (version 1.1) FAO; Rome, Italy and IIASA, Laxenburg, Austria: 2009.

Fischer HS. On the combination of species cover values from different vegetation layers. Applied Vegetation Science. 2015;18:169–170.

Foley JA, Defries R, Asner GP, et al. Global consequences of land use. Science. 2005;309:570–574. PubMed

Gilliam FS. Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. Journal of Ecology. 2006;94:1176–1191.

Gilliam FS. The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience. 2007;57:845–858.

Grace JB, Adler PB, Harpole WS, Borer ET, Seabloom EW. Causal networks clarify productivity-richness interrelations, bivariate plots do not. Functional Ecology. 2014;28:787–798.

Grimm NB, Staudinger MD, Staudt A, et al. Climate-change impacts on ecological systems: introduction to a US assessment. Frontiers in Ecology and the Environment. 2013;11:456–464.

Harris I, Jones PD, Osborn TJ, Lister DH. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. International Journal of Climatology. 2014;34:623–642.

Hedges LV, Gurevitch J, Curtis PS. The meta-analysis of response ratios in experimental ecology. Ecology. 1999;80:1150–1156.

Isbell F, Tilman D, Polasky S, Loreau M. The biodiversity-dependent ecosystem service debt. Ecology Letters. 2014 doi: 10.1111/ele.12393. PubMed DOI

Jenkins LH, Jenkins MA, Webster CR, Zollner PA, Shields JM. Herbaceous layer response to 17 years of controlled deer hunting in forested natural areas. Biological Conservation. 2014;175:119–128.

Johnston AE, Goulding KWT, Poulton PR. Soil acidification during more than 100 years under permanent grassland and woodland at Rothamsted. Soil Use and Management. 1986;2:3–10.

Katona K, Kiss M, Bleier N, et al. Ungulate browsing shapes climate change impacts on forest biodiversity in Hungary. Biodiversity and Conservation. 2013;22:1167–1180.

Keith SA, Newton AC, Morecroft MD, Bealey CE, Bullock JM. Taxonomic homogenization of woodland plant communities over 70 years. Proceedings of the Royal Society B-Biological Sciences. 2009;276:3539–3544. PubMed PMC

Kopecký M, Hédl R, Szabó P. Non-random extinctions dominate plant community changes in abandoned coppices. Journal of Applied Ecology. 2013;50:79–87. PubMed PMC

Lenoir J, Gegout JC, Dupouey JL, Bert D, Svenning JC. Forest plant community changes during 1989-2007 in response to climate warming in the Jura Mountains (France and Switzerland) Journal of Vegetation Science. 2010;21:949–964.

Murphy GEP, Romanuk TN. A meta-analysis of declines in local species richness from human disturbances. Ecology and Evolution. 2014;4:91–103. PubMed PMC

Paillet Y, Bergès L, Hjältén J, et al. Does biodiversity differ between managed and unmanaged forests? A meta-analysis on species richness in Europe. Conservation Biology. 2010;24:101–112. PubMed

Pauly D. Anecdotes and the shifting baseline syndrome of fisheries. Trends in Ecology & Evolution. 1995;10:430. PubMed

Pereira HM, Navarro LM, Martins IS. Global Biodiversity Change: The Bad, the Good, and the Unknown. Annual Review of Environment and Resources. 2012;37:25–50.

Peterken GF. Natural Woodland. Ecology and Conservation in Northern TemperateRegions. Cambridge: Cambridge University Press; 1996.

Plue J, Van Gils B, De Schrijver A, Peppler-Lisbach C, Verheyen K, Hermy M. Forest herb layer response to long-term light deficit along a forest developmental series. Acta Oecologica. 2013;53:63–72.

R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2014.

Rogister JE. De ekologische mR- en mN-waarden van de kruidlaag en de humuskwaliteit van bosplantengezelschappen. Groenendaal-Hoeilaart: Proefstation van Waters en Bossen; 1978.

Rosseel Y. lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software. 2012;48:1–36.

Royo AA, Collins R, Adams MB, Kirschbaum C, Carson WP. Pervasive interactions between ungulate browsers and disturbance regimes promote temperate forest herbaceous diversity. Ecology. 2010;91:93–105. PubMed

Schielzeth H. Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution. 2010;1:103–113.

Smart SM, Ellison AM, Bunce RGH, et al. Quantifying the impact of an extreme climate event on species diversity in fragmented temperate forests: the effect of the October 1987 storm on British broadleaved woodlands. Journal of Ecology. 2014;102:1273–1287.

Smith B, Wilson JB. A consumer's guide to evenness indices. Oikos. 1996;76:70–82.

Supp SR, Ernest SKM. Species-level and community-level responses to disturbance: a cross-community analysis. Ecology. 2014;95:1717–1723. PubMed

Sutherland WJ, Freckleton RP, Godfray HCJ, et al. Identification of 100 fundamental ecological questions. Journal of Ecology. 2013;101:58–67.

Valverde T, Silvertown J. An integrated model of demography, patch dynamics and seed dispersal in a woodland herb, Primula vulgaris. Oikos. 1997;80:67–77.

Van Calster H, Baeten L, De Schrijver A, De Keersmaeker L, Rogister JE, Verheyen K, Hermy M. Management driven changes (1967-2005) in soil acidity and the understorey plant community following conversion of a coppice-with-standards forest. Forest Ecology and Management. 2007;241:258–271.

Vellend M, Baeten L, Myers-Smith IH, et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proceedings of the National Academy of Sciences of the United States of America. 2013;110:19456–19459. PubMed PMC

Verheyen K, Baeten L, De Frenne P, et al. Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. Journal of Ecology. 2012;100:352–365.

Viechtbauer W. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software. 2010;36:1–48.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...