Regadenoson-Stress Dynamic Myocardial Perfusion Improves Diagnostic Performance of CT Angiography in Assessment of Intermediate Coronary Artery Stenosis in Asymptomatic Patients
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26236712
PubMed Central
PMC4506745
DOI
10.1155/2015/105629
Knihovny.cz E-zdroje
- MeSH
- koronární angiografie * MeSH
- koronární stenóza diagnostické zobrazování patofyziologie MeSH
- krevní tlak MeSH
- lidé středního věku MeSH
- lidé MeSH
- počítačová rentgenová tomografie * MeSH
- puriny farmakologie MeSH
- pyrazoly farmakologie MeSH
- srdeční frekvence MeSH
- zobrazování myokardiální perfuze * MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- puriny MeSH
- pyrazoly MeSH
- regadenoson MeSH Prohlížeč
The prospective study included 54 asymptomatic high-risk patients who underwent coronary CT angiography (CTA) and regadenoson-induced stress CT perfusion (rsCTP). Diagnostic accuracy of significant stenosis (≥50%) determination was evaluated for CTA alone and CTA + rsCTP in 27 patients referred to ICA due to the positive rsCTP findings. Combined evaluation of CTA + rsCTP had higher diagnostic accuracy over CTA alone (per-segment: specificity 96 versus 68%, p = 0.002; per-vessel: specificity 95 versus 75%, p = 0.012) and high overruling rate of rsCTP was proved in intermediate stenosis (40-70%). Results demonstrate a significant additional value of rsCTP in the assessment of intermediate coronary artery stenosis found with CTA.
Department of Cardiology University Hospital Pilsen Alej Svobody 80 304 60 Pilsen Czech Republic
Department of Surgery University Hospital Pilsen Alej Svobody 80 304 60 Pilsen Czech Republic
Siemens Healthcare CT Physics and Applications Development Siemensstrasse 1 91301 Forchheim Germany
Zobrazit více v PubMed
Sun Z., Aziz Y. F. A., Ng K. H. Coronary CT angiography: how should physicians use it wisely and when do physicians request it appropriately? European Journal of Radiology. 2012;81(4):e684–e687. doi: 10.1016/j.ejrad.2011.06.040. PubMed DOI
Patel A. R., Lodato J. A., Chandra S., et al. Detection of myocardial perfusion abnormalities using ultra-low radiation dose regadenoson stress multidetector computed tomography. Journal of Cardiovascular Computed Tomography. 2011;5(4):247–254. doi: 10.1016/j.jcct.2011.06.004. PubMed DOI
Patel A. R., Bhave N. M., Mor-Avi V. Myocardial perfusion imaging with cardiac computed tomography: state of the art. Journal of Cardiovascular Translational Research. 2013;6(5):695–707. doi: 10.1007/s12265-013-9499-3. PubMed DOI
Hadamitzky M., Täubert S., Deseive S., et al. Prognostic value of coronary computed tomography angiography during 5 years of follow-up in patients with suspected coronary artery disease. European Heart Journal. 2013;34(42):3277–3285. doi: 10.1093/eurheartj/eht293. PubMed DOI
Wang Y., Qin L., Shi X., et al. Adenosine-stress dynamic myocardial perfusion imaging with second-generation dual-source CT: comparison with conventional catheter coronary angiography and SPECT nuclear myocardial perfusion imaging. The American Journal of Roentgenology. 2012;198(3):521–529. doi: 10.2214/ajr.11.7830. PubMed DOI
Gallik D. M., Obermueller S. D., Swarna U. S., Guidry G. W., Mahmarian J. J., Verani M. S. Simultaneous assessment of myocardial perfusion and left ventricular function during transient coronary occlusion. Journal of the American College of Cardiology. 1995;25(7):1529–1538. doi: 10.1016/0735-1097(95)00092-I. PubMed DOI
Raff G. L., Abidov A., Achenbach S., et al. SCCT guidelines for the interpretation and reporting of coronary computed tomographic angiography. Journal of Cardiovascular Computed Tomography. 2009;3(2):122–136. doi: 10.1016/j.jcct.2009.01.001. PubMed DOI
Kim S. M., Choi J.-H., Chang S.-A., Choe Y. H. Additional value of adenosine-stress dynamic CT myocardial perfusion imaging in the reclassification of severity of coronary artery stenosis at coronary CT angiography. Clinical Radiology. 2013;68(12):e659–e668. doi: 10.1016/j.crad.2013.07.015. PubMed DOI
Rochitte C. E., George R. T., Chen M. Y., et al. Computed tomography angiography and perfusion to assess coronary artery stenosis causing perfusion defects by single photon emission computed tomography: the CORE320 study. European Heart Journal. 2014;35(17):1120–1130. doi: 10.1093/eurheartj/eht488. PubMed DOI PMC
Greif M., von Ziegler F., Bamberg F., et al. CT stress perfusion imaging for detection of haemodynamically relevant coronary stenosis as defined by FFR. Heart. 2013;99(14):1004–1011. doi: 10.1136/heartjnl-2013-303794. PubMed DOI
Kim S. M., Choi J.-H., Chang S.-A., Choe Y. H. Detection of ischaemic myocardial lesions with coronary CT angiography and adenosine-stress dynamic perfusion imaging using a 128-slice dual-source CT: diagnostic performance in comparison with cardiac MRI. British Journal of Radiology. 2013;86(1032) doi: 10.1259/bjr.20130481. PubMed DOI PMC
Ko B. S., Cameron J. D., Defrance T., Seneviratne S. K. CT stress myocardial perfusion imaging using multidetector CT—a review. Journal of Cardiovascular Computed Tomography. 2011;5(6):345–356. doi: 10.1016/j.jcct.2011.10.005. PubMed DOI
Feuchtner G., Goetti R., Plass A., et al. Adenosine stress high-pitch 128-slice dual-source myocardial computed tomography perfusion for imaging of reversible myocardial ischemia: comparison with magnetic resonance imaging. Circulation: Cardiovascular Imaging. 2011;4(5):540–549. doi: 10.1161/circimaging.110.961250. PubMed DOI
Becker A., Becker C. CT imaging of myocardial perfusion: possibilities and perspectives. Journal of Nuclear Cardiology. 2013;20(2):289–296. doi: 10.1007/s12350-013-9681-7. PubMed DOI
Huber A. M., Leber V., Gramer B. M., et al. Myocardium: dynamic versus single-shot CT perfusion imaging. Radiology. 2013;269(2):378–386. doi: 10.1148/radiol.13121441. PubMed DOI
Schwarz F., Hinkel R., Baloch E., et al. Myocardial CT perfusion imaging in a large animal model: comparison of dynamic versus single-phase acquisitions. JACC: Cardiovascular Imaging. 2013;6(12):1229–1238. doi: 10.1016/j.jcmg.2013.05.018. PubMed DOI
Iskandrian A. E., Bateman T. M., Belardinelli L., et al. Adenosine versus regadenoson comparative evaluation in myocardial perfusion imaging: results of the ADVANCE phase 3 multicenter international trial. Journal of Nuclear Cardiology. 2007;14(5):645–658. doi: 10.1016/j.nuclcard.2007.06.114. PubMed DOI
Roghi A., Palmieri B., Crivellaro W., Sara R., Puttini M., Faletra F. Preoperative assessment of cardiac risk in noncardiac major vascular surgery. The American Journal of Cardiology. 1999;83(2):169–174. doi: 10.1016/s0002-9149(98)00819-4. PubMed DOI
Romero L., de Virgilio C. Preoperative cardiac risk assessment: an updated approach. Archives of Surgery. 2001;136(12):1370–1376. doi: 10.1001/archsurg.136.12.1370. PubMed DOI
Bauer S. M., Cayne N. S., Veith F. J. New developments in the preoperative evaluation and perioperative management of coronary artery disease in patients undergoing vascular surgery. Journal of Vascular Surgery. 2010;51(1):242–251. doi: 10.1016/j.jvs.2009.08.087. PubMed DOI
Kertai M. D., Klein J., Bax J. J., Poldermans D. Predicting perioperative cardiac risk. Progress in Cardiovascular Diseases. 2005;47(4):240–257. doi: 10.1016/j.pcad.2005.01.002. PubMed DOI
Cury R. C., Kitt T. M., Feaheny K., Akin J., George R. T. Regadenoson-stress myocardial CT perfusion and single-photon emission CT: rationale, design, and acquisition methods of a prospective, multicenter, multivendor comparison. Journal of Cardiovascular Computed Tomography. 2014;8(1):2–12. doi: 10.1016/j.jcct.2013.09.004. PubMed DOI
Bettencourt N., Chiribiri A., Schuster A., et al. Direct comparison of cardiac magnetic resonance and multidetector computed tomography stress-rest perfusion imaging for detection of coronary artery disease. Journal of the American College of Cardiology. 2013;61(10):1099–1107. doi: 10.1016/j.jacc.2012.12.020. PubMed DOI
Mehra V. C., Valdiviezo C., Arbab-Zadeh A., et al. A stepwise approach to the visual interpretation of CT-based myocardial perfusion. Journal of Cardiovascular Computed Tomography. 2011;5(6):357–369. doi: 10.1016/j.jcct.2011.10.010. PubMed DOI
Rossi A., Uitterdijk A., Dijkshoorn M., et al. Quantification of myocardial blood flow by adenosine-stress CT perfusion imaging in pigs during various degrees of stenosis correlates well with coronary artery blood flow and fractional flow reserve. European Heart Journal Cardiovascular Imaging. 2013;14(4):331–338. doi: 10.1093/ehjci/jes150. PubMed DOI
Bamberg F., Hinkel R., Schwarz F., et al. Accuracy of dynamic computed tomography adenosine stress myocardial perfusion imaging in estimating myocardial blood flow at various degrees of coronary artery stenosis using a porcine animal model. Investigative Radiology. 2012;47(1):71–77. doi: 10.1097/rli.0b013e31823fd42b. PubMed DOI
Ko B. S., Cameron J. D., Leung M., et al. Combined CT coronary angiography and stress myocardial perfusion imaging for hemodynamically significant stenoses in patients with suspected coronary artery disease: a comparison with fractional flow reserve. JACC: Cardiovascular Imaging. 2012;5(11):1097–1111. doi: 10.1016/j.jcmg.2012.09.004. PubMed DOI
Pijls N. H. J. Fractional flow reserve to guide coronary revascularization. Circulation Journal. 2013;77(3):561–569. doi: 10.1253/circj.cj-13-0161. PubMed DOI