Suppression of Systematic Errors of Electronic Distance Meters for Measurement of Short Distances

. 2015 Aug 06 ; 15 (8) : 19264-301. [epub] 20150806

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26258777

In modern industrial geodesy, high demands are placed on the final accuracy, with expectations currently falling below 1 mm. The measurement methodology and surveying instruments used have to be adjusted to meet these stringent requirements, especially the total stations as the most often used instruments. A standard deviation of the measured distance is the accuracy parameter, commonly between 1 and 2 mm. This parameter is often discussed in conjunction with the determination of the real accuracy of measurements at very short distances (5-50 m) because it is generally known that this accuracy cannot be increased by simply repeating the measurement because a considerable part of the error is systematic. This article describes the detailed testing of electronic distance meters to determine the absolute size of their systematic errors, their stability over time, their repeatability and the real accuracy of their distance measurement. Twenty instruments (total stations) have been tested, and more than 60,000 distances in total were measured to determine the accuracy and precision parameters of the distance meters. Based on the experiments' results, calibration procedures were designed, including a special correction function for each instrument, whose usage reduces the standard deviation of the measurement of distance by at least 50%.

Zobrazit více v PubMed

Rueger J.M. 75 years of change in survey technology. Surv. Rev. 2006;38:459–473.

Rueger J.M. Electronic Distance Measurement. 3rd ed. Springer Heidelberg; Berlin, Germany: 1990. pp. 186–221.

Staiger R. Recommended Procedures for Routine Checks of Electro-Optical Distance Meters. [(accessed on 19 April 2015)]. Available online: http://www.fig.net/pub/figpub/pub09/FIG-Publication_Nr9_english.pdf.

Khalil R. New Compact Method for Laboratory Testing EDM Instruments; Proceedings of the FIG Working Week 2005 and GSDI-8; Cairo, Egypt. 16–21 April 2005; pp. 1–8.

Act Government; Australia: [(accessed on 19 April 2015)]. EDM Calibration Handbook. Available online: http://www.actpla.act.gov.au/__data/assets/pdf_file/0019/9451/EDM_Calibration_Handbook_16Oct.pdf.

Kilpela A., Pennala R., Kostmovaara J. Precise pulsed time-of-flight laser range finder for industrial distance measurements. Rev. Sci. Instrum. 2001;72:2197–2202.

Krauter A., Száládi K. Laboratory investigation on the distance meter unit in electronic tacheometers. Periodica. Polytech. Civil. Eng. 1987;31:55–63.

Czech Standards Institute . ISO 17123–4:2002 Optics and Optical Instruments—Field Procedures for Testing Geodetic and Surveying Instruments—Part. 4: Electro.-Optical Distance Meters (EDM Instruments) Czech Standards Institute; Prague, Czech Republic: 2005.

Czech Standards Institute . ČSN ISO 8322–8 Geometrical Accuracy in Building Industry. Determination of Accuracy of Measuring Instruments. Part. 8: Electronic Distance-Measuring Instruments Up to 150 m. Czech Standards Institute; Prague, Czech Republic: 1994.

Lechner J., Červinka L., Umnov I. Geodetic Surveying Tasks for Establishing a National Long Length Standard Baseline; Proceedings of the FIG Working Week 2008; Stockholm, Sweden. 14–19 June 2008; pp. 1–9.

Jokela J., Hakli P., Ahola J., Buga A., Putrimas R. On Traceability of Long Distances; Proceedings of the 19th IMEKO World Congress; Lisbon, Portugal. 6–12 September 2009; pp. 1882–1887.

Pollinger F., Meyer T., Beyer H., Doloca N.R., Schellin W., Niemeier W., Jokela J., Hakli P., Abou-Zeid A., Meiners-Hagen K. The upgraded PTB 600 m baseline: A high-accuracy reference for the calibration and the development of long distance measurement devices. Meas. Sci. Technol. 2012;9:1–11.

Buga A., Putrimas R., Slikas D., Jokela J. Kyviskes Calibration Baseline: Measurements and Improvements Analysis; Proceedings of the 9th International Conference on Environmental Engineering (ICEE); Vilnius, Lithuania. 22–23 May 2014; pp. 1–5.

Bozic B., Fan H., Milosavljevic Z. Establishment of the MGI EDM calibration baseline. Surv. Rev. 2013;45:263–268. doi: 10.1179/1752270611Y.0000000030. DOI

Surveyor General’s Directions No. 5. Verification of Distance Measuring Equipment. [(accessed on 19 April 2015)]; Available online: http://www.lpi.nsw.gov.au/__data/assets/pdf_file/0020/25940/sgddir5_Ver2009.pdf.

Buga A., Jokela J., Putrimas R., Zigmantiene E. Analysis of EDM Instruments Calibration at the Kyviskes Calibration Baseline; Proceedings of the 8th International Conference on Environmental Engineering; Vilnius, Lithuania. 19–20 May 2011; pp. 1301–1305.

De Wulf A., Constales D., Meskens J., Nuttens T., Stal C. Procedure for Analyzing Geometrical Characteristics of an EDM Calibration Bench; Proceedings of the FIG Working Week 2011 Bridging the Gap between Cultures; Marrakech, Morocco. 18–22 May 2011; pp. 1–9.

Martin D., Gatta G. Calibration of Total Stations Instruments at the ESRF; Proceedings of the XXIII FIG Congress Shaping the Changes; Munich, Germany. 8–13 October 2006; pp. 1–14.

Joeckel R., Stober M. Elektronische. Entfernungs-und Richtungsmessung. 4th ed. Wittwer; Stuttgart, Germany: 1999. (In German)

Solaric N., Lapaine M., Novakovic G. Testing the Precision of the Electro-Optical Distance Meter Mekometer ME5000 on the Calibration Baseline Zagreb. Surv. Rev. 2002;36:612–626. doi: 10.1179/sre.2002.36.286.612. DOI

Czech Research Institute of Geodesy, Topography and Cadaster. [(accessed on 19 April 2015)]. Available online: http://www.vugtk.cz/

Dvořáček F. System Software Testing of Laser Tracker Leica AT401. Geoinform. FCE CTU. 2014;13:49–57. doi: 10.14311/gi.13.6. DOI

Koch K.R. Parameter Estimation and Hypothesis Testing in Linear Model. 2nd ed. Springer Heidelberg; Berlin, Germany: 1999.

Bonfig K.W. Das Direkte Digitale Messverfahren (DDM) als Grundlage einfacher und dennoch genauer und storsicherer Sensoren. Sensors. 1988;3:103–108. (In German)

Matko V., Milanović M. Temperature-Compensated Capacitance-Frequency Converter with High Resolution. Sens. Actuators A Phys. 2014;220:262–269. doi: 10.1016/j.sna.2014.09.022. DOI

Matko V. Next generation AT-cut quartz crystal sensing devices. Sensors. 2011;11:4474–4482. doi: 10.3390/s110504474. PubMed DOI PMC

Štroner M., Hampacher M. Processing and Analysis of Measurements in Engineering Surveying (Zpracování. a analýza měření v inženýrské geodézii) 1st ed. CTU Publishing House; Prague, Czech Republic: 2011. (In Czech)

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...