Semi-automated segmentation of pre-operative low grade gliomas in magnetic resonance imaging
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P30 DK090728
NIDDK NIH HHS - United States
U01 CA160045
NCI NIH HHS - United States
1U01CA160045
NCI NIH HHS - United States
PubMed
26268363
PubMed Central
PMC4535671
DOI
10.1186/s40644-015-0047-z
PII: 10.1186/s40644-015-0047-z
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- gliom patologie chirurgie MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- nádory mozku patologie chirurgie MeSH
- počítačové zpracování obrazu * MeSH
- senzitivita a specificita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Segmentation of pre-operative low-grade gliomas (LGGs) from magnetic resonance imaging is a crucial step for studying imaging biomarkers. However, segmentation of LGGs is particularly challenging because they rarely enhance after gadolinium administration. Like other gliomas, they have irregular tumor shape, heterogeneous composition, ill-defined tumor boundaries, and limited number of image types. To overcome these challenges we propose a semi-automated segmentation method that relies only on T2-weighted (T2W) and optionally post-contrast T1-weighted (T1W) images. METHODS: First, the user draws a region-of-interest (ROI) that completely encloses the tumor and some normal tissue. Second, a normal brain atlas and post-contrast T1W images are registered to T2W images. Third, the posterior probability of each pixel/voxel belonging to normal and abnormal tissues is calculated based on information derived from the atlas and ROI. Finally, geodesic active contours use the probability map of the tumor to shrink the ROI until optimal tumor boundaries are found. This method was validated against the true segmentation (TS) of 30 LGG patients for both 2D (1 slice) and 3D. The TS was obtained from manual segmentations of three experts using the Simultaneous Truth and Performance Level Estimation (STAPLE) software. Dice and Jaccard indices and other descriptive statistics were computed for the proposed method, as well as the experts' segmentation versus the TS. We also tested the method with the BraTS datasets, which supply expert segmentations. RESULTS AND DISCUSSION: For 2D segmentation vs. TS, the mean Dice index was 0.90 ± 0.06 (standard deviation), sensitivity was 0.92, and specificity was 0.99. For 3D segmentation vs. TS, the mean Dice index was 0.89 ± 0.06, sensitivity was 0.91, and specificity was 0.99. The automated results are comparable with the experts' manual segmentation results. CONCLUSIONS: We present an accurate, robust, efficient, and reproducible segmentation method for pre-operative LGGs.
Department of Radiology Mayo Clinic 200 1st St SW Rochester MN 55905 USA
International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic
Zobrazit více v PubMed
DeAngelis LM. Brain tumors. N Engl J Med. 2001;344(2):114–23. doi: 10.1056/NEJM200101113440207. PubMed DOI
Cha S. Update on brain tumor imaging: from anatomy to physiology. AJNR Am J Neuroradiol. 2006;27(3):475–87. PubMed PMC
Kleihues P, Burger PC, Scheithauer BW. The new WHO classification of brain tumours. Brain Pathol. 1993;3(3):255–68. doi: 10.1111/j.1750-3639.1993.tb00752.x. PubMed DOI
Whittle IR. The dilemma of low grade glioma. J Neurol Neurosurg Psychiatry. 2004;75:31–6. PubMed PMC
Riemenschneider MJ, Jeuken JWM, Wesseling P, Reifenberger G. Molecular diagnostics of gliomas: state of the art. Acta Neuropathol. 2010;120(5):567–84. doi: 10.1007/s00401-010-0736-4. PubMed DOI PMC
Bauer S, Nolte LP, Reyes M. Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. Med Image Comput Comput Assist Interv. 2011;14(3):354–61. PubMed
Corso JJ, Sharon E, Dube S, El-Saden S, Sinha U, Yuille A. Efficient multilevel brain tumor segmentation with integrated Bayesian Model Classification. Medical Imaging, IEEE Transactions on. 2008;27(5):629–40. doi: 10.1109/TMI.2007.912817. PubMed DOI
Menze BH, Van Leemput K, Lashkari D, Weber MA, Ayache N, Golland P. A generative model for brain tumor segmentation in multi-modal images. Med Image Comput Comput Assist Interv. 2010;13(2):151–9. PubMed PMC
Zhu Y, Young GS, Xue Z, Huang RY, You H, Setayesh K, et al. Semi-automatic segmentation software for quantitative clinical brain glioblastoma evaluation. Acad Radiol. 2012;19(8):977–85. doi: 10.1016/j.acra.2012.03.026. PubMed DOI PMC
Zikic D, Glocker B, Konukoglu E, Criminisi A, Demiralp C, Shotton J, et al. Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. Med Image Comput Comput Assist Interv. 2012;15(3):369–76. PubMed
Bauer S, Wiest R, Nolte LP, Reyes M. A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol. 2013;58(13):R97–129. doi: 10.1088/0031-9155/58/13/R97. PubMed DOI
Hamamci A, Unal G, Kucuk N, Engin K. Cellular automata segmentation of brain tumors on post contrast MR images. Med Image Comput Comput Assist Interv. 2010;13(3):137–46. PubMed
Harati V, Khayati R, Farzan A. Fully automated tumor segmentation based on improved fuzzy connectedness algorithm in brain MR images. Comput Biol Med. 2011;41(7):483–92. doi: 10.1016/j.compbiomed.2011.04.010. PubMed DOI
Ho S, Bullitt E, Gerig G. Level-set evolution with region competition: automatic 3-D segmentation of brain tumors. Proceedings of 16th International Conference on Pattern Recognition 2002;1:532–5.
Kaus MR, Warfield SK, Nabavi A, Black PM, Jolesz FA, Kikinis R. Automated segmentation of MR images of brain tumors. Radiology. 2001;218(2):586–91. doi: 10.1148/radiology.218.2.r01fe44586. PubMed DOI
Prastawa M, Bullitt E, Ho S, Gerig G. A brain tumor segmentation framework based on outlier detection. Med Image Anal. 2004;8(3):275–83. doi: 10.1016/j.media.2004.06.007. PubMed DOI
Prastawa M, Bullitt E, Moon N, Van Leemput K, Gerig G. Automatic brain tumor segmentation by subject specific modification of atlas priors. Acad Radiol. 2003;10(12):1341–8. doi: 10.1016/S1076-6332(03)00506-3. PubMed DOI PMC
Sachdeva J, Kumar V, Gupta I, Khandelwal N, Ahuja CK. A novel content-based active contour model for brain tumor segmentation. Magn Reson Imaging. 2012;30(5):694–715. doi: 10.1016/j.mri.2012.01.006. PubMed DOI
Moon N, Bullitt E, van Leemput K, Gerig G. Automatic Brain and Tumor Segmentation. Medical Image Computing and Computer-Assisted Intervention — MICCAI 2002. T. Dohi and R. Kikinis, Springer Berlin Heidelberg. 2002;2488:372–9.
Avants BB, Tustison NJ, Stauffer M, Song G, Wu B, Gee JC. The Insight ToolKit image registration framework. Front Neuroinform. 2014;8:44. doi: 10.3389/fninf.2014.00044. PubMed DOI PMC
Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc. 1977;39(1):1–38.
Rohlfing T, Zahr NM, Sullivan EV, Pfefferbaum A. The SRI24 multi-channel atlas of normal adult human brain structure. Hum Brain Mapp. 2010;31(5):798–819. doi: 10.1002/hbm.20906. PubMed DOI PMC
Mattes D, Haynor DR, Vesselle H, Lewellyn TK, Eubank W. Nonrigid multimodality image registration. Proc SPIE Medcial Imaging. 2001;4322:1609–20. doi: 10.1117/12.431046. DOI
Marquez-Neila P, Baumela L, Alvarez L. A morphological approach to curvature-based evolution of curves and surfaces. IEEE Trans Pattern Anal Mach Intell. 2014;36(1):2–17. doi: 10.1109/TPAMI.2013.106. PubMed DOI
Warfield SK, Zou KH, Wells WM. Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging. 2004;23(7):903–21. doi: 10.1109/TMI.2004.828354. PubMed DOI PMC
Menze B, Reyes M, Van Leemput K. The Multimodal Brain TumorImage Segmentation Benchmark (BRATS) IEEE Trans Med Imaging PP. 2014;99:1. doi: 10.1109/TMI.2014.2377694. PubMed DOI