Semi-automated segmentation of pre-operative low grade gliomas in magnetic resonance imaging

. 2015 Aug 14 ; 15 (1) : 12. [epub] 20150814

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26268363

Grantová podpora
P30 DK090728 NIDDK NIH HHS - United States
U01 CA160045 NCI NIH HHS - United States
1U01CA160045 NCI NIH HHS - United States

Odkazy

PubMed 26268363
PubMed Central PMC4535671
DOI 10.1186/s40644-015-0047-z
PII: 10.1186/s40644-015-0047-z
Knihovny.cz E-zdroje

BACKGROUND: Segmentation of pre-operative low-grade gliomas (LGGs) from magnetic resonance imaging is a crucial step for studying imaging biomarkers. However, segmentation of LGGs is particularly challenging because they rarely enhance after gadolinium administration. Like other gliomas, they have irregular tumor shape, heterogeneous composition, ill-defined tumor boundaries, and limited number of image types. To overcome these challenges we propose a semi-automated segmentation method that relies only on T2-weighted (T2W) and optionally post-contrast T1-weighted (T1W) images. METHODS: First, the user draws a region-of-interest (ROI) that completely encloses the tumor and some normal tissue. Second, a normal brain atlas and post-contrast T1W images are registered to T2W images. Third, the posterior probability of each pixel/voxel belonging to normal and abnormal tissues is calculated based on information derived from the atlas and ROI. Finally, geodesic active contours use the probability map of the tumor to shrink the ROI until optimal tumor boundaries are found. This method was validated against the true segmentation (TS) of 30 LGG patients for both 2D (1 slice) and 3D. The TS was obtained from manual segmentations of three experts using the Simultaneous Truth and Performance Level Estimation (STAPLE) software. Dice and Jaccard indices and other descriptive statistics were computed for the proposed method, as well as the experts' segmentation versus the TS. We also tested the method with the BraTS datasets, which supply expert segmentations. RESULTS AND DISCUSSION: For 2D segmentation vs. TS, the mean Dice index was 0.90 ± 0.06 (standard deviation), sensitivity was 0.92, and specificity was 0.99. For 3D segmentation vs. TS, the mean Dice index was 0.89 ± 0.06, sensitivity was 0.91, and specificity was 0.99. The automated results are comparable with the experts' manual segmentation results. CONCLUSIONS: We present an accurate, robust, efficient, and reproducible segmentation method for pre-operative LGGs.

Zobrazit více v PubMed

DeAngelis LM. Brain tumors. N Engl J Med. 2001;344(2):114–23. doi: 10.1056/NEJM200101113440207. PubMed DOI

Cha S. Update on brain tumor imaging: from anatomy to physiology. AJNR Am J Neuroradiol. 2006;27(3):475–87. PubMed PMC

Kleihues P, Burger PC, Scheithauer BW. The new WHO classification of brain tumours. Brain Pathol. 1993;3(3):255–68. doi: 10.1111/j.1750-3639.1993.tb00752.x. PubMed DOI

Whittle IR. The dilemma of low grade glioma. J Neurol Neurosurg Psychiatry. 2004;75:31–6. PubMed PMC

Riemenschneider MJ, Jeuken JWM, Wesseling P, Reifenberger G. Molecular diagnostics of gliomas: state of the art. Acta Neuropathol. 2010;120(5):567–84. doi: 10.1007/s00401-010-0736-4. PubMed DOI PMC

Bauer S, Nolte LP, Reyes M. Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. Med Image Comput Comput Assist Interv. 2011;14(3):354–61. PubMed

Corso JJ, Sharon E, Dube S, El-Saden S, Sinha U, Yuille A. Efficient multilevel brain tumor segmentation with integrated Bayesian Model Classification. Medical Imaging, IEEE Transactions on. 2008;27(5):629–40. doi: 10.1109/TMI.2007.912817. PubMed DOI

Menze BH, Van Leemput K, Lashkari D, Weber MA, Ayache N, Golland P. A generative model for brain tumor segmentation in multi-modal images. Med Image Comput Comput Assist Interv. 2010;13(2):151–9. PubMed PMC

Zhu Y, Young GS, Xue Z, Huang RY, You H, Setayesh K, et al. Semi-automatic segmentation software for quantitative clinical brain glioblastoma evaluation. Acad Radiol. 2012;19(8):977–85. doi: 10.1016/j.acra.2012.03.026. PubMed DOI PMC

Zikic D, Glocker B, Konukoglu E, Criminisi A, Demiralp C, Shotton J, et al. Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. Med Image Comput Comput Assist Interv. 2012;15(3):369–76. PubMed

Bauer S, Wiest R, Nolte LP, Reyes M. A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol. 2013;58(13):R97–129. doi: 10.1088/0031-9155/58/13/R97. PubMed DOI

Hamamci A, Unal G, Kucuk N, Engin K. Cellular automata segmentation of brain tumors on post contrast MR images. Med Image Comput Comput Assist Interv. 2010;13(3):137–46. PubMed

Harati V, Khayati R, Farzan A. Fully automated tumor segmentation based on improved fuzzy connectedness algorithm in brain MR images. Comput Biol Med. 2011;41(7):483–92. doi: 10.1016/j.compbiomed.2011.04.010. PubMed DOI

Ho S, Bullitt E, Gerig G. Level-set evolution with region competition: automatic 3-D segmentation of brain tumors. Proceedings of 16th International Conference on Pattern Recognition 2002;1:532–5.

Kaus MR, Warfield SK, Nabavi A, Black PM, Jolesz FA, Kikinis R. Automated segmentation of MR images of brain tumors. Radiology. 2001;218(2):586–91. doi: 10.1148/radiology.218.2.r01fe44586. PubMed DOI

Prastawa M, Bullitt E, Ho S, Gerig G. A brain tumor segmentation framework based on outlier detection. Med Image Anal. 2004;8(3):275–83. doi: 10.1016/j.media.2004.06.007. PubMed DOI

Prastawa M, Bullitt E, Moon N, Van Leemput K, Gerig G. Automatic brain tumor segmentation by subject specific modification of atlas priors. Acad Radiol. 2003;10(12):1341–8. doi: 10.1016/S1076-6332(03)00506-3. PubMed DOI PMC

Sachdeva J, Kumar V, Gupta I, Khandelwal N, Ahuja CK. A novel content-based active contour model for brain tumor segmentation. Magn Reson Imaging. 2012;30(5):694–715. doi: 10.1016/j.mri.2012.01.006. PubMed DOI

Moon N, Bullitt E, van Leemput K, Gerig G. Automatic Brain and Tumor Segmentation. Medical Image Computing and Computer-Assisted Intervention — MICCAI 2002. T. Dohi and R. Kikinis, Springer Berlin Heidelberg. 2002;2488:372–9.

Avants BB, Tustison NJ, Stauffer M, Song G, Wu B, Gee JC. The Insight ToolKit image registration framework. Front Neuroinform. 2014;8:44. doi: 10.3389/fninf.2014.00044. PubMed DOI PMC

Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc. 1977;39(1):1–38.

Rohlfing T, Zahr NM, Sullivan EV, Pfefferbaum A. The SRI24 multi-channel atlas of normal adult human brain structure. Hum Brain Mapp. 2010;31(5):798–819. doi: 10.1002/hbm.20906. PubMed DOI PMC

Mattes D, Haynor DR, Vesselle H, Lewellyn TK, Eubank W. Nonrigid multimodality image registration. Proc SPIE Medcial Imaging. 2001;4322:1609–20. doi: 10.1117/12.431046. DOI

Marquez-Neila P, Baumela L, Alvarez L. A morphological approach to curvature-based evolution of curves and surfaces. IEEE Trans Pattern Anal Mach Intell. 2014;36(1):2–17. doi: 10.1109/TPAMI.2013.106. PubMed DOI

Warfield SK, Zou KH, Wells WM. Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging. 2004;23(7):903–21. doi: 10.1109/TMI.2004.828354. PubMed DOI PMC

Menze B, Reyes M, Van Leemput K. The Multimodal Brain TumorImage Segmentation Benchmark (BRATS) IEEE Trans Med Imaging PP. 2014;99:1. doi: 10.1109/TMI.2014.2377694. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...