High Efficacy but Low Potency of δ-Opioid Receptor-G Protein Coupling in Brij-58-Treated, Low-Density Plasma Membrane Fragments
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26285205
PubMed Central
PMC4540457
DOI
10.1371/journal.pone.0135664
PII: PONE-D-14-41637
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána chemie účinky léků metabolismus MeSH
- cetomakrogol farmakologie MeSH
- detergenty farmakologie MeSH
- HEK293 buňky MeSH
- hydrofobní a hydrofilní interakce MeSH
- lidé MeSH
- pertusový toxin toxicita MeSH
- receptory opiátové delta metabolismus MeSH
- teplota MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cetomakrogol MeSH
- detergenty MeSH
- pertusový toxin MeSH
- receptory opiátové delta MeSH
PRINCIPAL FINDINGS: HEK293 cells stably expressing PTX-insensitive δ-opioid receptor-Gi1α (C351I) fusion protein were homogenized, treated with low concentrations of non-ionic detergent Brij-58 at 0°C and fractionated by flotation in sucrose density gradient. In optimum range of detergent concentrations (0.025-0.05% w/v), Brij-58-treated, low-density membranes exhibited 2-3-fold higher efficacy of DADLE-stimulated, high-affinity [32P]GTPase and [35S]GTPγS binding than membranes of the same density prepared in the absence of detergent. The potency of agonist DADLE response was significantly decreased. At high detergent concentrations (>0.1%), the functional coupling between δ-opioid receptors and G proteins was completely diminished. The same detergent effects were measured in plasma membranes isolated from PTX-treated cells. Therefore, the effect of Brij-58 on δ-opioid receptor-G protein coupling was not restricted to the covalently bound Gi1α within δ-opioid receptor-Gi1α fusion protein, but it was also valid for PTX-sensitive G proteins of Gi/Go family endogenously expressed in HEK293 cells. Characterization of the direct effect of Brij-58 on the hydrophobic interior of isolated plasma membranes by steady-state anisotropy of diphenylhexatriene (DPH) fluorescence indicated a marked increase of membrane fluidity. The time-resolved analysis of decay of DPH fluorescence by the "wobble in cone" model of DPH motion in the membrane indicated that the exposure to the increasing concentrations of Brij-58 led to a decreased order and higher motional freedom of the dye. SUMMARY: Limited perturbation of plasma membrane integrity by low concentrations of non-ionic detergent Brij-58 results in alteration of δ-OR-G protein coupling. Maximum G protein-response to agonist stimulation (efficacy) is increased; affinity of response (potency) is decreased. The total degradation plasma membrane structure at high detergent concentrations results in diminution of functional coupling between δ-opioid receptors and G proteins.
Zobrazit více v PubMed
Anderson RG. The caveolae membrane system. Annu Rev Biochem. 1998;67:199–225. 10.1146/annurev.biochem.67.1.199 PubMed DOI
Brown DA, London E. Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem Biophys Res Commun. 1997;240:1–7. 10.1006/bbrc.1997.7575 PubMed DOI
Brown DA, London E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol. 1998;14:111–136. 10.1146/annurev.cellbio.14.1.111 PubMed DOI
Brown DA, London E. Structure and origin of ordered lipid domains in biological membranes. J Membr Biol. 1998;164:103–114. 10.1007/s002329900397 PubMed DOI
Brown DA, London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem. 2000;275:17221–17224. 10.1074/jbc.R000005200 PubMed DOI
Harder T, Simons K. Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr Opin Cell Biol. 1997;9:534–542. 10.1016/S0955-0674(97)80030-0 PubMed DOI
Lisanti MP, Scherer PE, Tang Z, Sargiacomo M. Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol. 1994;4:231–235. 10.1016/0962-8924(94)90114-7 PubMed DOI
Lisanti MP, Scherer PE, Vidugiriene J, Tang Z, Hermanowski-Vosatka A, Tu YH, et al. Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. J Cell Biol. 1994;126:111–126. PubMed PMC
London E, Brown DA. Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim Biophys Acta. 2000;1508:182–195. 10.1016/S0304-4157(00)00007-1 PubMed DOI
Okamoto T, Schlegel A, Scherer PE, Lisanti MP. Caveolins, a family of scaffolding proteins for organizing "preassembled signaling complexes" at the plasma membrane. J Biol Chem. 1998;273:5419–5422. 10.1074/jbc.273.10.5419 PubMed DOI
Pike LJ. Lipid rafts: heterogeneity on the high seas. Biochem J. 2004;378:281–292. 10.1042/BJ20031672 PubMed DOI PMC
Pike LJ. Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J Lipid Res. 2006;47:1597–1598. 10.1194/jlr.E600002-JLR200 PubMed DOI
Rybin VO, Pak E, Alcott S, Steinberg SF. Developmental changes in beta2-adrenergic receptor signaling in ventricular myocytes: the role of Gi proteins and caveolae microdomains. Mol Pharmacol. 2003;63:1338–1348. 10.1124/mol.63.6.1338 PubMed DOI
Rybin VO, Xu X, Lisanti MP, Steinberg SF. Differential targeting of beta-adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J Biol Chem. 2000;275:41447–41457. 10.1074/jbc.M006951200 PubMed DOI
Shaul PW, Anderson RG. Role of plasmalemmal caveolae in signal transduction. Am J Physiol. 1998;275:L843–851. PubMed
Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997;387:569–572. 10.1038/42408 PubMed DOI
Smart EJ, Graf GA, McNiven MA, Sessa WC, Engelman JA, Scherer PE, et al. Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol. 1999;19:7289–7304. PubMed PMC
Sargiacomo M, Sudol M, Tang Z, Lisanti MP. Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J Cell Biol. 1993;122:789–807. PubMed PMC
Bourova L, Kostrnova A, Hejnova L, Moravcova Z, Moon HE, Novotny J, et al. delta-Opioid receptors exhibit high efficiency when activating trimeric G proteins in membrane domains. J Neurochem. 2003;85:34–49. 10.1046/j.1471-4159.2003.01667.x PubMed DOI
Song KS, Li S, Okamoto T, Quilliam LA, Sargiacomo M, Lisanti MP. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J Biol Chem. 1996;271:9690–9697. 10.1074/jbc.271.16.9690 PubMed DOI
Song KS, Scherer PE, Tang Z, Okamoto T, Li S, Chafel M, et al. Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem. 1996;271:15160–15165. 10.1074/jbc.271.25.15160 PubMed DOI
Moravcova Z, Rudajev V, Stohr J, Novotny J, Cerny J, Parenti M, et al. Long-term agonist stimulation of IP prostanoid receptor depletes the cognate G(s)alpha protein in membrane domains but does not change the receptor level. Biochim Biophys Acta. 2004;1691:51–65. 10.1016/j.bbamcr.2003.12.004 PubMed DOI
Smart EJ, Ying YS, Mineo C, Anderson RG. A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc Natl Acad Sci U S A. 1995;92:10104–10108. PubMed PMC
Moon HE, Bahia DS, Cavalli A, Hoffmann M, Milligan G. Control of the efficiency of agonist-induced information transfer and stability of the ternary complex containing the delta opioid receptor and the alpha subunit of G(i1) by mutation of a receptor/G protein contact interface. Neuropharmacology. 2001;41:321–330. 10.1016/S0028-3908(01)00076-4 PubMed DOI
Stohr J, Bourova L, Hejnova L, Ihnatovych I, Novotny J, Svoboda P. Increased baclofen-stimulated G protein coupling and deactivation in rat brain cortex during development. Brain Res Dev Brain Res. 2004;151:67–73. 10.1016/j.devbrainres.2004.03.014 PubMed DOI
Brejchova J, Sykora J, Dlouha K, Roubalova L, Ostasov P, Vosahlikova M, et al. Fluorescence spectroscopy studies of HEK293 cells expressing DOR-Gi1alpha fusion protein; the effect of cholesterol depletion. Biochim Biophys Acta. 2011;1808:2819–2829. 10.1016/j.bbamem.2011.08.010 PubMed DOI
Shinitzky M, Barenholz Y. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta. 1978;515:367–394. PubMed
Shinitzky M, Inbar M. Microviscosity parameters and protein mobility in biological membranes. Biochim Biophys Acta. 1976;433:133–149. 10.1016/0005-2736(76)90183-8 PubMed DOI
Sykora J, Bourova L, Hof M, Svoboda P. The effect of detergents on trimeric G-protein activity in isolated plasma membranes from rat brain cortex: correlation with studies of DPH and Laurdan fluorescence. Biochim Biophys Acta. 2009;1788:324–332. 10.1016/j.bbamem.2008.11.008 PubMed DOI
Kawato S, Kinosita K Jr., Ikegami A. Dynamic structure of lipid bilayers studied by nanosecond fluorescence techniques. Biochemistry. 1977;16:2319–2324.: PubMed
Kinosita K Jr., Ikegami A, Kawato S. On the wobbling-in-cone analysis of fluorescence anisotropy decay. Biophys J. 1982;37:461–464. 10.1016/S0006-3495(82)84692-4 PubMed DOI PMC
Tolkovsky AM, Levitzki A. Mode of coupling between the beta-adrenergic receptor and adenylate cyclase in turkey erythrocytes. Biochemistry. 1978;17:3795 PubMed
Gross W, Lohse MJ. Mechanism of activation of A2 adenosine receptors. II. A restricted collision-coupling model of receptor-effector interaction. Mol Pharmacol. 1991;39:524–530. PubMed
Lohse MJ, Klotz KN, Schwabe U. Mechanism of A2 adenosine receptor activation. I. Blockade of A2 adenosine receptors by photoaffinity labeling. Mol Pharmacol. 1991;39:517–523. PubMed
Stickle D, Barber R. Analysis of receptor-mediated activation of GTP-binding protein/adenylate cyclase using the encounter coupling model. Mol Pharmacol. 1993;43:397–411. PubMed
Stickle D, Barber R. Collisions and encounters in simulations of receptor/GTP-binding protein interactions via simple diffusion. Biochim Biophys Acta. 1996;1310:242–250. 10.1016/0167-4889(95)00147-6 PubMed DOI
Remmers AE, Clark MJ, Alt A, Medzihradsky F, Woods JH, Traynor JR. Activation of G protein by opioid receptors: role of receptor number and G-protein concentration. Eur J Pharmacol. 2000;396:67–75. 10.1016/S0014-2999(00)00212-0 PubMed DOI
Neubig RR. Membrane organization in G-protein mechanisms. FASEB J. 1994;8:939–946.: PubMed
Neubig RR. Specificity of Receptor–G Protein Coupling: Protein Structure and Cellular Determinants. Semin Neurosci. 1998;9:189–197. 10.1006/smns.1997.0117 DOI
Steinberg SF, Brunton LL. Compartmentation of G protein-coupled signaling pathways in cardiac myocytes. Annu Rev Pharmacol Toxicol. 2001;41:751–773. 10.1146/annurev.pharmtox.41.1.751 PubMed DOI
Anderson RG, Jacobson K. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science. 2002;296:1821–1825. 10.1126/science.1068886 PubMed DOI
De Luca A, Sargiacomo M, Puca A, Sgaramella G, De Paolis P, Frati G, et al. Characterization of caveolae from rat heart: localization of postreceptor signal transduction molecules and their rearrangement after norepinephrine stimulation. J Cell Biochem. 2000;77:529–539. 10.1002/(SICI)1097-4644(20000615)77:4<596::AID-JCB7>3.0.CO;2-K PubMed DOI
de Weerd WF, Leeb-Lundberg LM. Bradykinin sequesters B2 bradykinin receptors and the receptor-coupled Galpha subunits Galphaq and Galphai in caveolae in DDT1 MF-2 smooth muscle cells. J Biol Chem. 1997;272:17858–17866. 10.1074/jbc.272.28.17858 PubMed DOI
Dessy C, Kelly RA, Balligand JL, Feron O. Dynamin mediates caveolar sequestration of muscarinic cholinergic receptors and alteration in NO signaling. EMBO J. 2000;19:4272–4280. 10.1093/emboj/19.16.4272 PubMed DOI PMC
Feron O, Smith TW, Michel T, Kelly RA. Dynamic targeting of the agonist-stimulated m2 muscarinic acetylcholine receptor to caveolae in cardiac myocytes. J Biol Chem. 1997;272:17744–17748. 10.1074/jbc.272.28.17744 PubMed DOI
Lasley RD, Narayan P, Uittenbogaard A, Smart EJ. Activated cardiac adenosine A(1) receptors translocate out of caveolae. J Biol Chem. 2000;275:4417–4421. 10.1074/jbc.275.6.4417 PubMed DOI
Moffett S, Brown DA, Linder ME. Lipid-dependent targeting of G proteins into rafts. J Biol Chem. 2000;275:2191–2198. 10.1074/jbc.275.3.2191 PubMed DOI
Murthy KS, Makhlouf GM. Heterologous desensitization mediated by G protein-specific binding to caveolin. J Biol Chem. 2000;275:30211–30219. 10.1074/jbc.M002194200 PubMed DOI
Schwencke C, Okumura S, Yamamoto M, Geng YJ, Ishikawa Y. Colocalization of beta-adrenergic receptors and caveolin within the plasma membrane. J Cell Biochem. 1999;75:64–72. 10.1002/(SICI)1097-4644(19991001)75:1<64::AID-JCB7>3.0.CO;2-L PubMed DOI
Oh P, Schnitzer JE. Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveolin to concentrate in caveolae, whereas G(i) and G(s) target lipid rafts by default. Mol Biol Cell. 2001;12:685–698. PMCID: PMC30973 PubMed PMC
Ostrom RS, Gregorian C, Drenan RM, Xiang Y, Regan JW, Insel PA. Receptor number and caveolar co-localization determine receptor coupling efficiency to adenylyl cyclase. J Biol Chem. 2001;276:42063–42069. 10.1074/jbc.M105348200 PubMed DOI
Ostrom RS, Insel PA. The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. Br J Pharmacol. 2004;143:235–245. 10.1038/sj.bjp.0705930 PubMed DOI PMC
Ostrom RS, Post SR, Insel PA. Stoichiometry and compartmentation in G protein-coupled receptor signaling: implications for therapeutic interventions involving G(s). J Pharmacol Exp Ther. 2000;294:407–412. PubMed
Sabourin T, Bastien L, Bachvarov DR, Marceau F. Agonist-induced translocation of the kinin B(1) receptor to caveolae-related rafts. Mol Pharmacol. 2002;61:546–553. 10.1124/mol.61.3.546 PubMed DOI
Ushio-Fukai M, Hilenski L, Santanam N, Becker PL, Ma Y, Griendling KK, et al. Cholesterol depletion inhibits epidermal growth factor receptor transactivation by angiotensin II in vascular smooth muscle cells: role of cholesterol-rich microdomains and focal adhesions in angiotensin II signaling. J Biol Chem. 2001;276:48269–48275. 10.1074/jbc.M105901200 PubMed DOI
Allen JA, Halverson-Tamboli RA, Rasenick MM. Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci. 2007;8:128–140. 10.1038/nrn2059 PubMed DOI
Huang P, Xu W, Yoon SI, Chen C, Chong PL, Liu-Chen LY. Cholesterol reduction by methyl-beta-cyclodextrin attenuates the delta opioid receptor-mediated signaling in neuronal cells but enhances it in non-neuronal cells. Biochem Pharmacol. 2007;73:534–549. 10.1016/j.bcp.2006.10.032 PubMed DOI PMC
Monastyrskaya K, Hostettler A, Buergi S, Draeger A. The NK1 receptor localizes to the plasma membrane microdomains, and its activation is dependent on lipid raft integrity. J Biol Chem. 2005;280:7135–7146. 10.1074/jbc.M405806200 PubMed DOI
Savi P, Zachayus JL, Delesque-Touchard N, Labouret C, Herve C, Uzabiaga MF, et al. The active metabolite of Clopidogrel disrupts P2Y12 receptor oligomers and partitions them out of lipid rafts. Proc Natl Acad Sci U S A. 2006;103:11069–11074. 10.1073/pnas.0510446103 PubMed DOI PMC
Xu W, Yoon SI, Huang P, Wang Y, Chen C, Chong PL, et al. Localization of the kappa opioid receptor in lipid rafts. J Pharmacol Exp Ther. 2006;317:1295–1306. 10.1124/jpet.105.099507 PubMed DOI
Zhao H, Loh HH, Law PY. Adenylyl cyclase superactivation induced by long-term treatment with opioid agonist is dependent on receptor localized within lipid rafts and is independent of receptor internalization. Mol Pharmacol. 2006;69:1421–1432. 10.1124/mol.105.020024 PubMed DOI
Zheng H, Pearsall EA, Hurst DP, Zhang Y, Chu J, Zhou Y, et al. Palmitoylation and membrane cholesterol stabilize mu-opioid receptor homodimerization and G protein coupling. BMC Cell Biol. 2012;13:6 10.1186/1471-2121-13-6 PubMed DOI PMC
Alves ID, Salamon Z, Hruby VJ, Tollin G. Ligand modulation of lateral segregation of a G-protein-coupled receptor into lipid microdomains in sphingomyelin/phosphatidylcholine solid-supported bilayers. Biochemistry. 2005;44:9168–9178. 10.1021/bi050207a PubMed DOI PMC
Salamon Z, Cowell S, Varga E, Yamamura HI, Hruby VJ, Tollin G. Plasmon resonance studies of agonist/antagonist binding to the human delta-opioid receptor: new structural insights into receptor-ligand interactions. Biophys J. 2000;79:2463–2474. 10.1016/S0006-3495(00)76489-7 PubMed DOI PMC
Jensen MO, Mouritsen OG. Lipids do influence protein function-the hydrophobic matching hypothesis revisited. Biochim Biophys Acta. 2004;1666:205–226. 10.1016/j.bbamem.2004.06.009 PubMed DOI
Lee AG. How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta. 2004;1666:62–87. 10.1016/j.bbamem.2004.05.012 PubMed DOI
Epand RF, Thomas A, Brasseur R, Vishwanathan SA, Hunter E, Epand RM. Juxtamembrane protein segments that contribute to recruitment of cholesterol into domains. Biochemistry. 2006;45:6105–6114. 10.1021/bi060245+ PubMed DOI PMC
Epand RM, Sayer BG, Epand RF. Caveolin scaffolding region and cholesterol-rich domains in membranes. J Mol Biol. 2005;345:339–350. 10.1016/j.jmb.2004.10.064 PubMed DOI
Cvejic S, Devi LA. Dimerization of the delta opioid receptor: implication for a role in receptor internalization. J Biol Chem. 1997;272:26959–26964. 10.1074/jbc.272.43.26959 PubMed DOI
George SR, Fan T, Xie Z, Tse R, Tam V, Varghese G, et al. Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. J Biol Chem. 2000;275:26128–26135. 10.1074/jbc.M000345200 PubMed DOI
Gomes I, Jordan BA, Gupta A, Trapaidze N, Nagy V, Devi LA. Heterodimerization of mu and delta opioid receptors: A role in opiate synergy. J Neurosci. 2000;20:RC110 20004736 [pii] PubMed PMC
He L, Fong J, von Zastrow M, Whistler JL. Regulation of opioid receptor trafficking and morphine tolerance by receptor oligomerization. Cell. 2002;108:271–282. 10.1016/S0092-8674(02)00613-X PubMed DOI
Jordan BA, Devi LA. G-protein-coupled receptor heterodimerization modulates receptor function. Nature. 1999;399:697–700. 10.1038/21441 PubMed DOI PMC
Lohse MJ. Dimerization in GPCR mobility and signaling. Curr Opin Pharmacol. 2010;10:53–58. 10.1016/j.coph.2009.10.007 PubMed DOI
Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, et al. Crystal structure of the mu-opioid receptor bound to a morphinan antagonist. Nature. 2012;485:321–326. 10.1038/nature10954 PubMed DOI PMC
McVey M, Ramsay D, Kellett E, Rees S, Wilson S, Pope AJ, et al. Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer. The human delta-opioid receptor displays constitutive oligomerization at the cell surface, which is not regulated by receptor occupancy. J Biol Chem. 2001;276:14092–14099. 10.1074/jbc.M008902200 PubMed DOI
Ramsay D, Kellett E, McVey M, Rees S, Milligan G. Homo- and hetero-oligomeric interactions between G-protein-coupled receptors in living cells monitored by two variants of bioluminescence resonance energy transfer (BRET): hetero-oligomers between receptor subtypes form more efficiently than between less closely related sequences. Biochem J. 2002;365:429–440. 10.1042/BJ20020251 PubMed DOI PMC