An experimental comparison of feature selection methods on two-class biomedical datasets
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
26327447
DOI
10.1016/j.compbiomed.2015.08.010
PII: S0010-4825(15)00291-7
Knihovny.cz E-zdroje
- Klíčová slova
- Classification performance, Feature selection, Multivariate FS, Stability, Univariate FS,
- MeSH
- algoritmy MeSH
- databáze faktografické MeSH
- lidé MeSH
- multivariační analýza MeSH
- Parkinsonova nemoc diagnóza MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů metody MeSH
- software MeSH
- statistické modely MeSH
- výpočetní biologie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Feature selection is a significant part of many machine learning applications dealing with small-sample and high-dimensional data. Choosing the most important features is an essential step for knowledge discovery in many areas of biomedical informatics. The increased popularity of feature selection methods and their frequent utilisation raise challenging new questions about the interpretability and stability of feature selection techniques. In this study, we compared the behaviour of ten state-of-the-art filter methods for feature selection in terms of their stability, similarity, and influence on prediction performance. All of the experiments were conducted on eight two-class datasets from biomedical areas. While entropy-based feature selection appears to be the most stable, the feature selection techniques yielding the highest prediction performance are minimum redundance maximum relevance method and feature selection based on Bhattacharyya distance. In general, univariate feature selection techniques perform similarly to or even better than more complex multivariate feature selection techniques with high-dimensional datasets. However, with more complex and smaller datasets multivariate methods slightly outperform univariate techniques.
Citace poskytuje Crossref.org