Tuning emergent magnetism in a Hund's impurity
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26344182
DOI
10.1038/nnano.2015.193
PII: nnano.2015.193
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The recently proposed concept of a Hund's metal--a metal in which electron correlations are driven by Hund's rule coupling-can be used to explain the exotic magnetic and electronic behaviour of strongly correlated electron systems of multi-orbital metallic materials. Tuning the abundance of parameters that determine these materials is, however, experimentally challenging. Here, we show that the basic constituent of a Hund's metal--a Hund's impurity--can be realized using a single iron atom adsorbed on a platinum surface, a system that comprises a magnetic moment in the presence of strong charge fluctuations. The magnetic properties can be controlled by using the tip of a scanning tunnelling microscope to change the binding site and degree of hydrogenation of the 3d transition-metal atom. We are able to experimentally explore a regime of four almost degenerate energy scales (Zeeman energy, temperature, Kondo temperature and magnetic anisotropy) and probe the magnetic excitations with the microscope tip. The regime of our Hund's impurity can be tuned from an emergent magnetic moment to a multi-orbital Kondo state, and the system could be used to test predictions of advanced many-body theories for non-Fermi liquids in quantum magnets or unconventional superconductors.
Department of Physics Hamburg University Hamburg D 20355 Germany
Institute for Molecules and Materials Radboud University Nijmegen 6525 AJ The Netherlands
Institute of Physics ASCR Na Slovance 2 Prague CZ 18221 Czech Republic
Institute of Theoretical Physics Hamburg University Hamburg D 20355 Germany
Zobrazit více v PubMed
Science. 2011 Apr 8;332(6026):200-4 PubMed
Science. 2007 Aug 31;317(5842):1199-203 PubMed
Phys Rev Lett. 2011 Dec 16;107(25):256401 PubMed
Science. 2004 Oct 15;306(5695):466-9 PubMed
Science. 1987 Mar 6;235(4793):1196-8 PubMed
Nat Mater. 2011 Sep 18;10(12):932-5 PubMed
Science. 2010 Jun 11;328(5984):1370-3 PubMed
Nat Nanotechnol. 2014 Jan;9(1):64-8 PubMed
Nat Commun. 2013;4:2110 PubMed
Phys Rev Lett. 2011 Mar 4;106(9):096401 PubMed
Phys Rev Lett. 2013 May 3;110(18):186404 PubMed
J Phys Condens Matter. 2011 Mar 2;23(8):085601 PubMed
Phys Rev Lett. 2010 Mar 19;104(11):117601 PubMed
Science. 1998 Apr 24;280(5363):567-9 PubMed
Phys Rev Lett. 2000 Aug 14;85(7):1504-7 PubMed
Phys Rev Lett. 2002 Feb 18;88(7):077205 PubMed
Nat Commun. 2011 Oct 04;2:490 PubMed
Phys Rev Lett. 2015 Mar 13;114(10):106807 PubMed
Phys Rev Lett. 2013 Oct 11;111(15):157204 PubMed
Phys Rev Lett. 2008 Oct 17;101(16):166405 PubMed
Science. 2005 Sep 2;309(5740):1542-4 PubMed
Phys Rev Lett. 2011 May 6;106(18):187201 PubMed
Phys Rev Lett. 2007 Dec 21;99(25):256601 PubMed
Sci Rep. 2013;3:1210 PubMed
Phys Rev Lett. 2009 Oct 2;103(14):147205 PubMed