The Stationary-Phase Cells of Saccharomyces cerevisiae Display Dynamic Actin Filaments Required for Processes Extending Chronological Life Span
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26351139
PubMed Central
PMC4609741
DOI
10.1128/mcb.00811-15
PII: MCB.00811-15
Knihovny.cz E-resources
- MeSH
- Actins metabolism ultrastructure MeSH
- Actin Cytoskeleton metabolism ultrastructure MeSH
- Saccharomyces cerevisiae Proteins metabolism ultrastructure MeSH
- Saccharomyces cerevisiae cytology growth & development MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Actins MeSH
- Saccharomyces cerevisiae Proteins MeSH
Stationary-growth-phase Saccharomyces cerevisiae yeast cultures consist of nondividing cells that undergo chronological aging. For their successful survival, the turnover of proteins and organelles, ensured by autophagy and the activation of mitochondria, is performed. Some of these processes are engaged in by the actin cytoskeleton. In S. cerevisiae stationary-phase cells, F actin has been shown to form static aggregates named actin bodies, subsequently cited to be markers of quiescence. Our in vivo analyses revealed that stationary-phase cultures contain cells with dynamic actin filaments, besides the cells with static actin bodies. The cells with dynamic actin displayed active endocytosis and autophagy and well-developed mitochondrial networks. Even more, stationary-phase cell cultures grown under calorie restriction predominantly contained cells with actin cables, confirming that the presence of actin cables is linked to successful adaptation to stationary phase. Cells with actin bodies were inactive in endocytosis and autophagy and displayed aberrations in mitochondrial networks. Notably, cells of the respiratory activity-deficient cox4Δ strain displayed the same mitochondrial aberrations and actin bodies only. Additionally, our results indicate that mitochondrial dysfunction precedes the formation of actin bodies and the appearance of actin bodies corresponds to decreased cell fitness. We conclude that the F-actin status reflects the extent of damage that arises from exponential growth.
See more in PubMed
Kaeberlein M. 2010. Lessons on longevity from budding yeast. Nature 464:513–519. doi:10.1038/nature08981. PubMed DOI PMC
Longo VD, Finch CE. 2003. Evolutionary medicine: from dwarf model systems to healthy centenarians? Science 299:1342–1346. doi:10.1126/science.1077991. PubMed DOI
Gray JV, Petsko GA, Johnston GC, Ringe D, Singer RA, Werner-Washburne M. 2004. “Sleeping beauty”: quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 68:187–206. doi:10.1128/MMBR.68.2.187-206.2004. PubMed DOI PMC
Sagot I, Pinson B, Salin B, Daignan-Fornier B. 2006. Actin bodies in yeast quiescent cells: an immediately available actin reserve? Mol Biol Cell 17:4645–4655. doi:10.1091/mbc.E06-04-0282. PubMed DOI PMC
Shi L, Sutter BM, Ye X, Tu BP. 2010. Trehalose is a key determinant of the quiescent metabolic state that fuels cell cycle progression upon return to growth. Mol Biol Cell 21:1982–1990. doi:10.1091/mbc.E10-01-0056. PubMed DOI PMC
Allen C, Buttner S, Aragon AD, Thomas JA, Meirelles O, Jaetao JE, Benn D, Ruby SW, Veenhuis M, Madeo F, Werner-Washburne M. 2006. Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures. J Cell Biol 174:89–100. doi:10.1083/jcb.200604072. PubMed DOI PMC
Smith DL Jr, McClure JM, Matecic M, Smith JS. 2007. Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the sirtuins. Aging Cell 6:649–662. doi:10.1111/j.1474-9726.2007.00326.x. PubMed DOI
Fabrizio P, Hoon S, Shamalnasab M, Galbani A, Wei M, Giaever G, Nislow C, Longo VD. 2010. Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation. PLoS Genet 6:e1001024. doi:10.1371/journal.pgen.1001024. PubMed DOI PMC
Alvers AL, Fishwick LK, Wood MS, Hu D, Chung HS, Dunn WA Jr, Aris JP. 2009. Autophagy and amino acid homeostasis are required for chronological longevity in Saccharomyces cerevisiae. Aging Cell 8:353–369. doi:10.1111/j.1474-9726.2009.00469.x. PubMed DOI PMC
Li L, Miles S, Melville Z, Prasad A, Bradley G, Breeden LL. 2013. Key events during the transition from rapid growth to quiescence in budding yeast require posttranscriptional regulators. Mol Biol Cell 24:3697–3709. doi:10.1091/mbc.E13-05-0241. PubMed DOI PMC
Ocampo A, Liu J, Schroeder EA, Shadel GS, Barrientos A. 2012. Mitochondrial respiratory thresholds regulate yeast chronological life span and its extension by caloric restriction. Cell Metab 16:55–67. doi:10.1016/j.cmet.2012.05.013. PubMed DOI PMC
Bonawitz ND, Rodeheffer MS, Shadel GS. 2006. Defective mitochondrial gene expression results in reactive oxygen species-mediated inhibition of respiration and reduction of yeast life span. Mol Cell Biol 26:4818–4829. doi:10.1128/MCB.02360-05. PubMed DOI PMC
Toshima JY, Toshima J, Kaksonen M, Martin AC, King DS, Drubin DG. 2006. Spatial dynamics of receptor-mediated endocytic trafficking in budding yeast revealed by using fluorescent alpha-factor derivatives. Proc Natl Acad Sci U S A 103:5793–5798. doi:10.1073/pnas.0601042103. PubMed DOI PMC
Monastyrska I, Rieter E, Klionsky DJ, Reggiori F. 2009. Multiple roles of the cytoskeleton in autophagy. Biol Rev Camb Philos Soc 84:431–448. doi:10.1111/j.1469-185X.2009.00082.x. PubMed DOI PMC
Higuchi R, Vevea JD, Swayne TC, Chojnowski R, Hill V, Boldogh IR, Pon LA. 2013. Actin dynamics affect mitochondrial quality control and aging in budding yeast. Curr Biol 23:2417–2422. doi:10.1016/j.cub.2013.10.022. PubMed DOI PMC
Adams AE, Pringle JR. 1984. Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae. J Cell Biol 98:934–945. doi:10.1083/jcb.98.3.934. PubMed DOI PMC
Young ME, Cooper JA, Bridgman PC. 2004. Yeast actin patches are networks of branched actin filaments. J Cell Biol 166:629–635. doi:10.1083/jcb.200404159. PubMed DOI PMC
Huckaba TM, Gay AC, Pantalena LF, Yang HC, Pon LA. 2004. Live cell imaging of the assembly, disassembly, and actin cable-dependent movement of endosomes and actin patches in the budding yeast, Saccharomyces cerevisiae. J Cell Biol 167:519–530. doi:10.1083/jcb.200404173. PubMed DOI PMC
Idrissi FZ, Blasco A, Espinal A, Geli MI. 2012. Ultrastructural dynamics of proteins involved in endocytic budding. Proc Natl Acad Sci U S A 109:E2587–E2594. doi:10.1073/pnas.1202789109. PubMed DOI PMC
Moseley JB, Goode BL. 2006. The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol Mol Biol Rev 70:605–645. doi:10.1128/MMBR.00013-06. PubMed DOI PMC
Sagot I, Klee SK, Pellman D. 2002. Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat Cell Biol 4:42–50. PubMed
Pruyne D, Gao L, Bi E, Bretscher A. 2004. Stable and dynamic axes of polarity use distinct formin isoforms in budding yeast. Mol Biol Cell 15:4971–4989. doi:10.1091/mbc.E04-04-0296. PubMed DOI PMC
Smethurst DG, Dawes IW, Gourlay CW. 2014. Actin—a biosensor that determines cell fate in yeasts. FEMS Yeast Res 14:89–95. doi:10.1111/1567-1364.12119. PubMed DOI
Delley PA, Hall MN. 1999. Cell wall stress depolarizes cell growth via hyperactivation of RHO1. J Cell Biol 147:163–174. doi:10.1083/jcb.147.1.163. PubMed DOI PMC
Desrivieres S, Cooke FT, Parker PJ, Hall MN. 1998. MSS4, a phosphatidylinositol-4-phosphate 5-kinase required for organization of the actin cytoskeleton in Saccharomyces cerevisiae. J Biol Chem 273:15787–15793. doi:10.1074/jbc.273.25.15787. PubMed DOI
Chowdhury S, Smith KW, Gustin MC. 1992. Osmotic stress and the yeast cytoskeleton: phenotype-specific suppression of an actin mutation. J Cell Biol 118:561–571. doi:10.1083/jcb.118.3.561. PubMed DOI PMC
Yuzyuk T, Foehr M, Amberg DC. 2002. The MEK kinase Ssk2p promotes actin cytoskeleton recovery after osmotic stress. Mol Biol Cell 13:2869–2880. doi:10.1091/mbc.02-01-0004. PubMed DOI PMC
Farah ME, Sirotkin V, Haarer B, Kakhniashvili D, Amberg DC. 2011. Diverse protective roles of the actin cytoskeleton during oxidative stress. Cytoskeleton 68:340–354. doi:10.1002/cm.20516. PubMed DOI PMC
Gourlay CW, Ayscough KR. 2005. Identification of an upstream regulatory pathway controlling actin-mediated apoptosis in yeast. J Cell Sci 118:2119–2132. doi:10.1242/jcs.02337. PubMed DOI
Yu JH, Crevenna AH, Bettenbuhl M, Freisinger T, Wedlich-Soldner R. 2011. Cortical actin dynamics driven by formins and myosin V. J Cell Sci 124:1533–1541. doi:10.1242/jcs.079038. PubMed DOI
Xu L, Bretscher A. 2014. Rapid glucose depletion immobilizes active myosin V on stabilized actin cables. Curr Biol 24:2471–2479. doi:10.1016/j.cub.2014.09.017. PubMed DOI PMC
Uesono Y, Ashe MP, Toh EA. 2004. Simultaneous yet independent regulation of actin cytoskeletal organization and translation initiation by glucose in Saccharomyces cerevisiae. Mol Biol Cell 15:1544–1556. doi:10.1091/mbc.E03-12-0877. PubMed DOI PMC
Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O'Shea EK. 2003. Global analysis of protein localization in budding yeast. Nature 425:686–691. doi:10.1038/nature02026. PubMed DOI
Baudin A, Ozier-Kalogeropoulos O, Denouel A, Lacroute F, Cullin C. 1993. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21:3329–3330. doi:10.1093/nar/21.14.3329. PubMed DOI PMC
Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. 1994. Green fluorescent protein as a marker for gene expression. Science 263:802–805. doi:10.1126/science.8303295. PubMed DOI
Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH. 2002. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30:e23. doi:10.1093/nar/30.6.e23. PubMed DOI PMC
Sheff MA, Thorn KS. 2004. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21:661–670. doi:10.1002/yea.1130. PubMed DOI
Shaner NC, Lin MZ, McKeown MR, Steinbach PA, Hazelwood KL, Davidson MW, Tsien RY. 2008. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5:545–551. doi:10.1038/nmeth.1209. PubMed DOI PMC
Gietz RD, Schiestl RH. 2007. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34. doi:10.1038/nprot.2007.13. PubMed DOI
Yang HC, Pon LA. 2002. Actin cable dynamics in budding yeast. Proc Natl Acad Sci U S A 99:751–756. doi:10.1073/pnas.022462899. PubMed DOI PMC
Costanzo M, Nishikawa JL, Tang X, Millman JS, Schub O, Breitkreuz K, Dewar D, Rupes I, Andrews B, Tyers M. 2004. CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell 117:899–913. doi:10.1016/j.cell.2004.05.024. PubMed DOI
Bean JM, Siggia ED, Cross FR. 2006. Coherence and timing of cell cycle start examined at single-cell resolution. Mol Cell 21:3–14. doi:10.1016/j.molcel.2005.10.035. PubMed DOI
Doyle T, Botstein D. 1996. Movement of yeast cortical actin cytoskeleton visualized in vivo. Proc Natl Acad Sci U S A 93:3886–3891. doi:10.1073/pnas.93.9.3886. PubMed DOI PMC
Smith MG, Swamy SR, Pon LA. 2001. The life cycle of actin patches in mating yeast. J Cell Sci 114:1505–1513. PubMed
Goode BL, Rodal AA, Barnes G, Drubin DG. 2001. Activation of the Arp2/3 complex by the actin filament binding protein Abp1p. J Cell Biol 153:627–634. doi:10.1083/jcb.153.3.627. PubMed DOI PMC
Drubin DG, Miller KG, Botstein D. 1988. Yeast actin-binding proteins: evidence for a role in morphogenesis. J Cell Biol 107:2551–2561. doi:10.1083/jcb.107.6.2551. PubMed DOI PMC
Ayscough KR, Stryker J, Pokala N, Sanders M, Crews P, Drubin DG. 1997. High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J Cell Biol 137:399–416. doi:10.1083/jcb.137.2.399. PubMed DOI PMC
Galletta BJ, Mooren OL, Cooper JA. 2010. Actin dynamics and endocytosis in yeast and mammals. Curr Opin Biotechnol 21:604–610. doi:10.1016/j.copbio.2010.06.006. PubMed DOI PMC
He C, Song H, Yorimitsu T, Monastyrska I, Yen WL, Legakis JE, Klionsky DJ. 2006. Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast. J Cell Biol 175:925–935. doi:10.1083/jcb.200606084. PubMed DOI PMC
Monastyrska I, He C, Geng J, Hoppe AD, Li Z, Klionsky DJ. 2008. Arp2 links autophagic machinery with the actin cytoskeleton. Mol Biol Cell 19:1962–1975. doi:10.1091/mbc.E07-09-0892. PubMed DOI PMC
Hamasaki M, Noda T, Baba M, Ohsumi Y. 2005. Starvation triggers the delivery of the endoplasmic reticulum to the vacuole via autophagy in yeast. Traffic 6:56–65. doi:10.1111/j.1600-0854.2004.00245.x. PubMed DOI
Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y. 2001. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20:5971–5981. doi:10.1093/emboj/20.21.5971. PubMed DOI PMC
Gourlay CW, Carpp LN, Timpson P, Winder SJ, Ayscough KR. 2004. A role for the actin cytoskeleton in cell death and aging in yeast. J Cell Biol 164:803–809. doi:10.1083/jcb.200310148. PubMed DOI PMC
Bonawitz ND, Chatenay-Lapointe M, Pan Y, Shadel GS. 2007. Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab 5:265–277. doi:10.1016/j.cmet.2007.02.009. PubMed DOI PMC
Aerts AM, Zabrocki P, Govaert G, Mathys J, Carmona-Gutierrez D, Madeo F, Winderickx J, Cammue BP, Thevissen K. 2009. Mitochondrial dysfunction leads to reduced chronological lifespan and increased apoptosis in yeast. FEBS Lett 583:113–117. doi:10.1016/j.febslet.2008.11.028. PubMed DOI
Pan Y, Schroeder EA, Ocampo A, Barrientos A, Shadel GS. 2011. Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling. Cell Metab 13:668–678. doi:10.1016/j.cmet.2011.03.018. PubMed DOI PMC
Sollner T, Griffiths G, Pfaller R, Pfanner N, Neupert W. 1989. MOM19, an import receptor for mitochondrial precursor proteins. Cell 59:1061–1070. doi:10.1016/0092-8674(89)90762-9. PubMed DOI
Saveanu C, Fromont-Racine M, Harington A, Ricard F, Namane A, Jacquier A. 2001. Identification of 12 new yeast mitochondrial ribosomal proteins including 6 that have no prokaryotic homologues. J Biol Chem 276:15861–15867. doi:10.1074/jbc.M010864200. PubMed DOI
Kaksonen M, Sun Y, Drubin DG. 2003. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115:475–487. doi:10.1016/S0092-8674(03)00883-3. PubMed DOI
Longo VD, Fabrizio P. 2012. Chronological aging in Saccharomyces cerevisiae. Subcell Biochem 57:101–121. doi:10.1007/978-94-007-2561-4_5. PubMed DOI PMC
Davidson GS, Joe RM, Roy S, Meirelles O, Allen CP, Wilson MR, Tapia PH, Manzanilla EE, Dodson AE, Chakraborty S, Carter M, Young S, Edwards B, Sklar L, Werner-Washburne M. 2011. The proteomics of quiescent and nonquiescent cell differentiation in yeast stationary-phase cultures. Mol Biol Cell 22:988–998. doi:10.1091/mbc.E10-06-0499. PubMed DOI PMC
Matecic M, Smith DL, Pan X, Maqani N, Bekiranov S, Boeke JD, Smith JS. 2010. A microarray-based genetic screen for yeast chronological aging factors. PLoS Genet 6:e1000921. doi:10.1371/journal.pgen.1000921. PubMed DOI PMC
Aris JP, Alvers AL, Ferraiuolo RA, Fishwick LK, Hanvivatpong A, Hu D, Kirlew C, Leonard MT, Losin KJ, Marraffini M, Seo AY, Swanberg V, Westcott JL, Wood MS, Leeuwenburgh C, Dunn WA Jr. 2013. Autophagy and leucine promote chronological longevity and respiration proficiency during calorie restriction in yeast. Exp Gerontol 48:1107–1119. doi:10.1016/j.exger.2013.01.006. PubMed DOI PMC
Ruckenstuhl C, Netzberger C, Entfellner I, Carmona-Gutierrez D, Kickenweiz T, Stekovic S, Gleixner C, Schmid C, Klug L, Sorgo AG, Eisenberg T, Buttner S, Marino G, Koziel R, Jansen-Durr P, Frohlich KU, Kroemer G, Madeo F. 2014. Lifespan extension by methionine restriction requires autophagy-dependent vacuolar acidification. PLoS Genet 10:e1004347. doi:10.1371/journal.pgen.1004347. PubMed DOI PMC
Lang MJ, Martinez-Marquez JY, Prosser DC, Ganser LR, Buelto D, Wendland B, Duncan MC. 2014. Glucose starvation inhibits autophagy via vacuolar hydrolysis and induces plasma membrane internalization by down-regulating recycling. J Biol Chem 289:16736–16747. doi:10.1074/jbc.M113.525782. PubMed DOI PMC
Longo VD, Nislow C, Fabrizio P. 2010. Endosomal protein sorting and autophagy genes contribute to the regulation of yeast life span. Autophagy 6:1227–1228. doi:10.4161/auto.6.8.13850. PubMed DOI
Gourlay CW, Ayscough KR. 2006. Actin-induced hyperactivation of the Ras signaling pathway leads to apoptosis in Saccharomyces cerevisiae. Mol Cell Biol 26:6487–6501. doi:10.1128/MCB.00117-06. PubMed DOI PMC
Leadsham JE, Miller K, Ayscough KR, Colombo S, Martegani E, Sudbery P, Gourlay CW. 2009. Whi2p links nutritional sensing to actin-dependent Ras-cAMP-PKA regulation and apoptosis in yeast. J Cell Sci 122:706–715. doi:10.1242/jcs.042424. PubMed DOI PMC
Minamide LS, Striegl AM, Boyle JA, Meberg PJ, Bamburg JR. 2000. Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function. Nat Cell Biol 2:628–636. doi:10.1038/35023579. PubMed DOI
Bernstein BW, Chen H, Boyle JA, Bamburg JR. 2006. Formation of actin-ADF/cofilin rods transiently retards decline of mitochondrial potential and ATP in stressed neurons. Am J Physiol Cell Physiol 291:C828–C839. doi:10.1152/ajpcell.00066.2006. PubMed DOI
Formaldehyde fixation is detrimental to actin cables in glucose-depleted S. cerevisiae cells