The Content of the 14 Metals in Cancellous and Cortical Bone of the Hip Joint Affected by Osteoarthritis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26357659
PubMed Central
PMC4555358
DOI
10.1155/2015/815648
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- hlavice femuru metabolismus MeSH
- kovy analýza MeSH
- krček femuru metabolismus MeSH
- kyčelní kloub metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- náhrada kyčelního kloubu metody MeSH
- osteoartróza metabolismus MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kovy MeSH
The aim of the study was to determine the content of particular elements Ca, Mg, P, Na, K, Zn, Cu, Fe, Mo, Cr, Ni, Ba, Sr, and Pb in the proximal femur bone tissue (cancellous and cortical bone) of 96 patients undergoing total hip replacement for osteoarthritis using ICP-AES and FAAS analytical techniques. The interdependencies among these elements and their correlations depended on factors including age, gender, place of residence, tobacco consumption, alcohol consumption, exposure to environmental pollution, physical activity, and type of degenerative change which were examined by statistical and chemometric methods. The factors that exerted the greatest influence on the elements in the femoral head and neck were tobacco smoking (higher Cr and Ni content in smokers), alcohol consumption (higher concentrations of Ni, Cu in people who consume alcohol), and gender (higher Cu, Zn, and Ni concentrations in men). The factors influencing Pb accumulation in bone tissue were tobacco, alcohol, gender, and age. In primary and secondary osteoarthritis of the hip, the content and interactions of elements are different (mainly those of Fe and Pb). There were no significant differences in the concentrations of elements in the femoral head and neck that could be attributed to residence or physical activity.
Zobrazit více v PubMed
Berglund M., Åkesson A., Bjellerup P., Vahter M. Metal-bone interactions. Toxicology Letters. 2000;112-113:219–225. doi: 10.1016/S0378-4274(99)00272-6. PubMed DOI
Hodgson E. A Textbook of Modern Toxicology. 4th. Wiley; 2010. Introduction to toxicology 3.
Goyer R. A. Toxic and essential metal interactions. Annual Review of Nutrition. 1997;17(1):37–50. doi: 10.1146/annurev.nutr.17.1.37. PubMed DOI
Fowler B. A., Nordberg G. F., Nordberg M., Friberg L. Handbook on the Toxicology of Metals. New York, NY, USA: Elsevier; 2011.
Glimcher M. J. Bone: nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. Reviews in Mineralogy and Geochemistry. 2006;64(1):223–282. doi: 10.2138/rmg.2006.64.8. DOI
Zaichick S., Zaichick V., Karandashev V. K., Moskvina I. R. The effect of age and gender on 59 trace-element contents in human rib bone investigated by inductively coupled plasma mass spectrometry. Biological Trace Element Research. 2011;143(1):41–57. doi: 10.1007/s12011-010-8837-4. PubMed DOI
Boonen S., Aerssens J., Dequeker J., et al. Age-associated decline in human femoral neck cortical and trabecular content of insulin-like growth factor I: potential implications for age- related (type II) osteoporotic fracture occurrence. Calcified Tissue International. 1997;61(3):173–178. doi: 10.1007/s002239900318. PubMed DOI
Bergdahl I. A., Strömberg U., Gerhardsson L., Schütz A., Chettle D. R., Skerfving S. Lead concentrations in tibial and calcaneal bone in relation to the history of lead exposure. Scandinavian Journal of Work, Environment & Health. 1998;24(1):38–45. doi: 10.5271/sjweh.276. PubMed DOI
Solomons N. W. Update on zinc biology. Annals of Nutrition and Metabolism. 2013;62(supplement 1):8–17. doi: 10.1159/000348547. PubMed DOI
Hamza R. T., Hamed A. I., Sallam M. T. Effect of zinc supplementation on growth Hormone Insulin growth factor axis in short Egyptian children with zinc deficiency. Italian Journal of Pediatrics. 2012;38(1, article 21) doi: 10.1186/1824-7288-38-21. PubMed DOI PMC
Fong L., Tan K., Tran C., et al. Interaction of dietary zinc and intracellular binding protein metallothionein in postnatal bone growth. Bone. 2009;44(6):1151–1162. doi: 10.1016/j.bone.2009.02.011. PubMed DOI
Hesse E., Kiviranta R., Wu M., et al. Zinc finger protein 521, a new player in bone formation. Annals of the New York Academy of Sciences. 2010;1192:32–37. doi: 10.1111/j.1749-6632.2009.05347.x. PubMed DOI
Brodziak-Dopierała B., Paukszto A., Kowol J., Bogunia M., Ahnert B. Interactions of copper and iron with other elements in the osseous tissue of the femur head. Fresenius Environmental Bulletin. 2009;18(10):1963–1966.
de Romaña D. L., Olivares M., Uauy R., Araya M. Risks and benefits of copper in light of new insights of copper homeostasis. Journal of Trace Elements in Medicine and Biology. 2011;25(1):3–13. doi: 10.1016/j.jtemb.2010.11.004. PubMed DOI
Okano T. Effects of essential trace elements on bone turnover—in relation to the osteoporosis. Japanese Journal of Clinical Medicine. 1996;54(1):148–154. PubMed
Kabata-Pendias A., Mukherjee A. B. Trace Elements from Soil to Human. Springer; 2007.
Weinberg E. D. The hazards of iron loading. Metallomics. 2010;2(11):732–740. doi: 10.1039/c0mt00023j. PubMed DOI
Budis H., Kalisinska E., Lanocha N., et al. The concentration of manganese, iron, and strontium in hip joint bone obtained from patients undergoing hip replacement surgery. Journal of Trace Elements in Medicine and Biology. 2014;28(1):39–44. doi: 10.1016/j.jtemb.2013.07.004. PubMed DOI
Saidak Z., Marie P. J. Strontium signaling: molecular mechanisms and therapeutic implications in osteoporosis. Pharmacology and Therapeutics. 2012;136(2):216–226. doi: 10.1016/j.pharmthera.2012.07.009. PubMed DOI
Ross A. C. Modern Nutrition in Health and Disease. Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012.
Cempel M., Nikel G. Nickel: a review of its sources and environmental toxicology. Polish Journal of Environmental Studies. 2006;15(3):375–382.
Brodziak-Dopierała B., Kwapuliński J., Sobczyk K., Kowol J. The occurrence of nickel and other elements in tissues of the hip joint. Ecotoxicology and Environmental Safety. 2011;74(4):630–635. doi: 10.1016/j.ecoenv.2010.09.012. PubMed DOI
Godwin H. A. The biological chemistry of lead. Current Opinion in Chemical Biology. 2001;5(2):223–227. doi: 10.1016/s1367-5931(00)00194-0. PubMed DOI
Jaffe E. K., Martins J., Li J., Kervinen J., Dunbrack R. L., Jr. The molecular mechanism of lead inhibition of human porphobilinogen synthase. The Journal of Biological Chemistry. 2001;276(2):1531–1537. doi: 10.1074/jbc.m007663200. PubMed DOI
Brodziak-Dopierała B., Kwapuliński J., Gajda Z., Toborek J., Bogunia M. Changes of heavy metal concentrations in cross-sections of human femur head. Biological Trace Element Research. 2006;114(1–3):107–114. doi: 10.1385/bter:114:1:107. PubMed DOI
Brodziak B., Kwapuliński J., Rzepka J. Application of femur capitulum in estimation of the exposureto the selected heavy metals in inhabitants of industrial and recreational regions. Environmental Medicine. 2004;7(2):105–111.
Brodziak-DopieraŁa B., Kwapuliński J., Kowol J., Sobczyk K., Gajda Z. The application of principal component analysis to interpretation of occurrence of metals in the femur head. Polish Journal of Environmental Studies. 2010;19(1):49–58.
Brodziak-Dopierała B., Kwapuliński J., Kusz D., Gajda Z., Sobczyk K. Interactions between concentrations of chemical elements in human femoral heads. Archives of Environmental Contamination and Toxicology. 2009;57(1):203–210. doi: 10.1007/s00244-008-9228-0. PubMed DOI
Kuo H.-W., Kuo S.-M., Chou C.-H., Lee T.-C. Determination of 14 elements in Taiwanese bones. Science of the Total Environment. 2000;255(1–3):45–54. doi: 10.1016/s0048-9697(00)00448-4. PubMed DOI
Patrick L. Toxic metals and antioxidants: part 2. The role of antioxidants in arsenic and cadmium toxicity. Alternative Medicine Review. 2003;8(2):106–128. PubMed
Zaichick V. INAA of Ca, Cl, K, Mg, Mn, Na, P, and Sr contents in the human cortical and trabecular bone. Journal of Radioanalytical and Nuclear Chemistry. 2006;269(3):653–659. doi: 10.1007/s10967-006-0281-8. DOI
Darrah T. H. Inorganic trace element composition of modern human bones: relation to bone pathology and geographical provenance [Ph.D. thesis] New York, NY, USA: Univeristy of Rochester; 2009.
Lanocha N., Kalisinska E., Kosik-Bogacka D. I., Budis H., Sokolowski S., Bohatyrewicz A. Concentrations of trace elements in bones of the hip joint from patients after hip replacement surgery. Journal of Trace Elements in Medicine and Biology. 2012;26(1):20–25. doi: 10.1016/j.jtemb.2011.11.006. PubMed DOI
Jurkiewicz A., Wiechula D., Nowak R., Gazdzik T., Loska K. Metal content in femoral head spongious bone of people living in regions of different degrees of environmental pollution in Southern and Middle Poland. Ecotoxicology and Environmental Safety. 2004;59(1):95–101. doi: 10.1016/j.ecoenv.2004.01.002. PubMed DOI
Zaichick S., Zaichick V. The effect of age and gender on 38 chemical element contents in human femoral neck investigated by instrumental neutron activation analysis. Biological Trace Element Research. 2010;137(1):1–12. doi: 10.1007/s12011-009-8554-z. PubMed DOI
Vahter M., Berglund M., Åkesson A., Lidén C. Metals and women's health. Environmental Research. 2002;88(3):145–155. doi: 10.1006/enrs.2002.4338. PubMed DOI
Brzóska M. M., Galażyn-Sidorczuk M., Rogalska J., et al. Beneficial effect of zinc supplementation on biomechanical properties of femoral distal end and femoral diaphysis of male rats chronically exposed to cadmium. Chemico-Biological Interactions. 2008;171(3):312–324. doi: 10.1016/j.cbi.2007.11.007. PubMed DOI
Brzóska M. M., Majewska K., Moniuszko-Jakoniuk J. Bone mineral density, chemical composition and biomechanical properties of the tibia of female rats exposed to cadmium since weaning up to skeletal maturity. Food and Chemical Toxicology. 2005;43(10):1507–1519. doi: 10.1016/j.fct.2005.04.008. PubMed DOI
Jamieson J. A., Taylor C. G., Weiler H. A. Marginal zinc deficiency exacerbates bone lead accumulation and high dietary zinc attenuates lead accumulation at the expense of bone density in growing rats. Toxicological Sciences. 2006;92:286–294. doi: 10.1093/toxsci/kfj201. PubMed DOI
Brodziak-Dopierała B., Kwapuliński J., Bogunia M., Ahnert B., Paukszto A., Jakubowska J. Metabolism of chromium in femur head in aspect of cigarette smoking. Przegla̧d lekarski. 2006;63(10):1020–1022. PubMed
Bogunia M., Brodziak-Dopierała B., Kwapuliński J., Ahnert B., Kowol J., Nogaj E. The occurance lead and cadmium in hip joint in aspect of exposure on tobacco smoke. Przegląd Lekarski. 2008;65(10):529–532. PubMed
Kupraszewicz E., Brzóska M. M. Excessive ethanol consumption under exposure to lead intensifies disorders in bone metabolism: a study in a rat model. Chemico-Biological Interactions. 2013;203(2):486–501. doi: 10.1016/j.cbi.2013.01.002. PubMed DOI
Sampson H. W. Alcohol, osteoporosis, and bone regulating hormones. Alcoholism: Clinical and Experimental Research. 1997;21(3):400–403. doi: 10.1111/j.1530-0277.1997.tb03782.x. PubMed DOI
Zaichick V., Zaichick S., Karandashev V., Nosenko S. The effect of age and gender on Al, B, Ba, Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Sr, V, and Zn contents in rib bone of healthy humans. Biological Trace Element Research. 2009;129(1–3):107–115. doi: 10.1007/s12011-008-8302-9. PubMed DOI
Yoshinaga J., Suzuki T., Morita M., Hayakawa M. Trace elements in ribs of elderly people and elemental variation in the presence of chronic diseases. Science of the Total Environment. 1995;162(2-3):239–252. doi: 10.1016/0048-9697(95)04470-l. PubMed DOI