Interfaces between Cranial Bone and AISI 304 Steel after Long-Term Implantation: A Case Study of Cranial Screws

. 2024 Jul 08 ; 10 (7) : 4297-4310. [epub] 20240620

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38900847

Interfaces between AISI 304 stainless steel screws and cranial bone were investigated after long-term implantation lasting for 42 years. Samples containing the interface regions were analyzed using state-of-the-art analytical techniques including secondary ion mass, Fourier-transform infrared, Raman, and X-ray photoelectron spectroscopies. Local samples for scanning transmission electron microscopy were cut from the interface regions using the focused ion beam technique. A chemical composition across the interface was recorded in length scales covering micrometric and nanometric resolutions and relevant differences were found between peri-implant and the distant cranial bone, indicating generally younger bone tissue in the peri-implant area. Furthermore, the energy dispersive spectroscopy revealed an 80 nm thick steel surface layer enriched by oxygen suggesting that the AISI 304 material undergoes a corrosion attack. The attack is associated with transport of metallic ions, namely, ferrous and ferric iron, into the bone layer adjacent to the implant. The results comply with an anticipated interplay between released iron ions and osteoclast proliferation. The interplay gives rise to an autocatalytic process in which the iron ions stimulate the osteoclast activity while a formation of fresh bone resorption sites boosts the corrosion process through interactions between acidic osteoclast extracellular compartments and the implant surface. The autocatalytic process thus may account for an accelerated turnover of the peri-implant bone.

Zobrazit více v PubMed

Shah F. A.; Thomsen P.; Palmquist A. Osseointegration and Current Interpretations of the Bone-Implant Interface. Acta Biomaterialia 2019, 84, 1–15. 10.1016/j.actbio.2018.11.018. PubMed DOI

Shah F. A.; Ruscsák K.; Palmquist A. 50 Years of Scanning Electron Microscopy of Bone—a Comprehensive Overview of the Important Discoveries Made and Insights Gained into Bone Material Properties in Health, Disease, and Taphonomy. Bone Res. 2019, 7 (1), 15.10.1038/s41413-019-0053-z. PubMed DOI PMC

Kim T.; See C. W.; Li X.; Zhu D. Orthopedic Implants and Devices for Bone Fractures and Defects: Past, Present and Perspective. Engineered Regeneration 2020, 1, 6–18. 10.1016/j.engreg.2020.05.003. DOI

Kang D.-W.; Kim S.-H.; Choi Y.-H.; Kim Y.-K. Repeated Failure of Implants at the Same Site: A Retrospective Clinical Study. Maxillofac Plast Reconstr Surg 2019, 41 (1), 27.10.1186/s40902-019-0209-1. PubMed DOI PMC

Advances in Metallic Biomaterials: Tissues, Materials and Biological Reactions; Mitsuo N., Narushima T., Nakai M., Eds.; Springer, 2015; Vol. 3,10.1007/978-3-662-46836-4. DOI

Coulter G.; Young D. A.; Dalziel R. E.; Shimmin A. J. Birmingham Hip Resurfacing at a Mean of Ten Years. J. Bone Joint Surg Br 2012, 94-B (3), 315–321. 10.1302/0301-620X.94B3.28185. PubMed DOI

Blackwood D. J.; Pereira B. P. No Corrosion of 304 Stainless Steel Implant after 40 Years of Service. J. Mater. Sci. Mater. Med. 2004, 15 (7), 755–758. 10.1023/B:JMSM.0000032814.20695.3c. PubMed DOI

Sansone V.; Pagani D.; Melato M. The Effects on Bone Cells of Metal Ions Released from Orthopaedic Implants. A Review. Clinical Cases in Mineral and Bone Metabolism 2013, 10 (1), 34.10.11138/ccmbm/2013.10.1.034. PubMed DOI PMC

Abu-Amer Y.; Darwech I.; Clohisy J. C. Aseptic Loosening of Total Joint Replacements: Mechanisms Underlying Osteolysis and Potential Therapies. Arthritis Res. Ther 2007, 9, S6.10.1186/ar2170. PubMed DOI PMC

Keegan G. M.; Learmonth I. D.; Case C. P. Orthopaedic Metals and Their Potential Toxicity in the Arthroplasty Patient. J. Bone Joint Surg Br 2007, 89-B (5), 567–573. 10.1302/0301-620X.89B5.18903. PubMed DOI

Delaunay C.; Petit I.; Learmonth I. D.; Oger P.; Vendittoli P. A. Metal-on-Metal Bearings Total Hip Arthroplasty: The Cobalt and Chromium Ions Release Concern. Orthop Traumatol Surg Res. 2010, 96 (8), 894–904. 10.1016/j.otsr.2010.05.008. PubMed DOI

Bijukumar D. R.; Segu A.; Souza J. C. M.; Li X. J.; Barba M.; Mercuri L. G.; Jacobs J. J.; Mathew M. T. Systemic and Local Toxicity of Metal Debris Released from Hip Prostheses: A Review of Experimental Approaches. Nanomedicine 2018, 14 (3), 951–963. 10.1016/j.nano.2018.01.001. PubMed DOI PMC

Evans J. T.; Evans J. P.; Walker R. W.; Blom A. W.; Whitehouse M. R.; Sayers A. How Long Does a Hip Replacement Last? A Systematic Review and Meta-Analysis of Case Series and National Registry Reports with More than 15 Years of Follow-Up. Lancet 2019, 393 (10172), 647–654. 10.1016/S0140-6736(18)31665-9. PubMed DOI PMC

Cabraja M.; Klein M.; Lehmann T.-N. Long-Term Results Following Titanium Cranioplasty of Large Skull Defects. Neurosurg Focus 2009, 26 (6), E1010.3171/2009.3.FOCUS091. PubMed DOI

Shah A. M.; Jung H.; Skirboll S. Materials Used in Cranioplasty: A History and Analysis. Neurosurg Focus 2014, 36 (4), E19.10.3171/2014.2.FOCUS13561. PubMed DOI

Yeap M. C.; Tu P. H.; Liu Z. H.; Hsieh P. C.; Liu Y. T.; Lee C. Y.; Lai H. Y.; Chen C. T.; Huang Y. C.; Wei K.-c.; Wu C. T.; Chen C. C. Long-Term Complications of Cranioplasty Using Stored Autologous Bone Graft, Three-Dimensional Polymethyl Methacrylate, or Titanium Mesh After Decompressive Craniectomy: A Single-Center Experience After 596 Procedures. World Neurosurg 2019, 128, e841–e850. 10.1016/j.wneu.2019.05.005. PubMed DOI

Hamböck M.; Hosmann A.; Seemann R.; Wolf H.; Schachinger F.; Hajdu S.; Widhalm H. The Impact of Implant Material and Patient Age on the Long-Term Outcome of Secondary Cranioplasty Following Decompressive Craniectomy for Severe Traumatic Brain Injury. Acta Neurochir (Wien) 2020, 162 (4), 745.10.1007/s00701-020-04243-7. PubMed DOI PMC

Giese H.; Meyer J.; Unterberg A.; Beynon C. Long-Term Complications and Implant Survival Rates after Cranioplastic Surgery: A Single-Center Study of 392 Patients. Neurosurg Rev. 2021, 44 (3), 1755–1763. 10.1007/s10143-020-01374-4. PubMed DOI PMC

Shah F. A.; Stenlund P.; Martinelli A.; Thomsen P.; Palmquist A. Direct Communication between Osteocytes and Acid-Etched Titanium Implants with a Sub-Micron Topography. J. Mater. Sci. Mater. Med. 2016, 27 (11), 167.10.1007/s10856-016-5779-1. PubMed DOI PMC

Schwarcz H. P.; Abueidda D.; Jasiuk I. The Ultrastructure of Bone and Its Relevance to Mechanical Properties. Front Phys. 2017, 5, 279137.10.3389/fphy.2017.00039. DOI

Omar O.; Engstrand T.; Linder L. K. B.; Åberg J.; Shah F. A.; Palmquist A.; Birgersson U.; Elgali I.; Pujari-Palmer M.; Engqvist H.; Thomsen P. In Situ Bone Regeneration of Large Cranial Defects Using Synthetic Ceramic Implants with a Tailored Composition and Design. Proc. Natl. Acad. Sci. U. S. A. 2020, 117 (43), 26660–26671. 10.1073/pnas.2007635117. PubMed DOI PMC

Gao X.; Fraulob M.; Haïat G. Biomechanical Behaviours of the Bone-Implant Interface: A Review. J. R Soc. Interface 2019, 16 (156), 20190259.10.1098/rsif.2019.0259. PubMed DOI PMC

Manolagas S. C. Birth and Death of Bone Cells: Basic Regulatory Mechanisms and Implications for the Pathogenesis and Treatment of Osteoporosis. Endocr Rev. 2000, 21 (2), 115–137. 10.1210/edrv.21.2.0395. PubMed DOI

Cadosch D.; Chan E.; Gautschi O. P.; Simmen H. P.; Filgueira L. Bio-Corrosion of Stainless Steel by Osteoclasts-in Vitro Evidence. J. Orthop Res. 2009, 27 (7), 841–846. 10.1002/jor.20831. PubMed DOI

Di Laura A.; Hothi H. S.; Meswania J. M.; Whittaker R. K.; de Villiers D.; Zustin J.; Blunn G. W.; Skinner J. A.; Hart A. J. Clinical Relevance of Corrosion Patterns Attributed to Inflammatory Cell-Induced Corrosion: A Retrieval Study. J. Biomed Mater. Res. B Appl. Biomater 2017, 105 (1), 155–164. 10.1002/jbm.b.33540. PubMed DOI

Peterson J.; Dechow P. C. Material Properties of the Human Cranial Vault and Zygoma. Anat Rec A Discov Mol. Cell Evol Biol. 2003, 274A (1), 785–797. 10.1002/ar.a.10096. PubMed DOI

Peterson J.; Dechow P. C. Material Properties of the Inner and Outer Cortical Tables of the Human Parietal Bone. Anat Rec 2002, 268 (1), 7–15. 10.1002/ar.10131. PubMed DOI

Stadelmann P A.JEMS Electron Microscopy Software. Lausanne, 2020.

Druckmuller M.Adaptive Contrast Control. Brno, 2008.

Shah F. A.; Johansson B. R.; Thomsen P.; Palmquist A. Ultrastructural Evaluation of Shrinkage Artefacts Induced by Fixatives and Embedding Resins on Osteocyte Processes and Pericellular Space Dimensions. J. Biomed Mater. Res. A 2015, 103 (4), 1565–1576. 10.1002/jbm.a.35287. PubMed DOI

Henss A.; Rohnke M.; Knaack S.; Kleine-Boymann M.; Leichtweiss T.; Schmitz P.; El Khassawna T.; Gelinsky M.; Heiss C.; Janek J. Quantification of Calcium Content in Bone by Using ToF-SIMS-a First Approach. Biointerphases 2013, 8 (1), 31.10.1186/1559-4106-8-31. PubMed DOI

Bala Y.; Farlay D.; Delmas P. D.; Meunier P. J.; Boivin G. Time Sequence of Secondary Mineralization and Microhardness in Cortical and Cancellous Bone from Ewes. Bone 2010, 46 (4), 1204–1212. 10.1016/j.bone.2009.11.032. PubMed DOI

Boskey A. L.; Imbert L. Bone Quality Changes Associated with Aging and Disease: A Review. Ann. N.Y. Acad. Sci. 2017, 1410 (1), 93–106. 10.1111/nyas.13572. PubMed DOI PMC

Stockhausen K. E.; Qwamizadeh M.; Wölfel E. M.; Hemmatian H.; Fiedler I. A. K.; Flenner S.; Longo E.; Amling M.; Greving I.; Ritchie R. O.; Schmidt F. N.; Busse B. Collagen Fiber Orientation Is Coupled with Specific Nano-Compositional Patterns in Dark and Bright Osteons Modulating Their Biomechanical Properties. ACS Nano 2021, 15 (1), 455–467. 10.1021/acsnano.0c04786. PubMed DOI

Figueiredo M.; Fernando A.; Martins G.; Freitas J.; Judas F.; Figueiredo H. Effect of the Calcination Temperature on the Composition and Microstructure of Hydroxyapatite Derived from Human and Animal Bone. Ceram. Int. 2010, 36 (8), 2383–2393. 10.1016/j.ceramint.2010.07.016. DOI

Más B. A.; Cattani S. M. de M.; Rangel R. de C. C.; Ribeiro G. de A.; Cruz N. C.; Leite F. de L.; Nascente P. A. de P.; Duek E. A. de R. Surface Characterization and Osteoblast-like Cells Culture on Collagen Modified PLDLA Scaffolds. Mater. Res. 2014, 17 (6), 1523–1534. 10.1590/1516-1439.269414. DOI

Shen L.; Yu Y.; Zhou Y.; Pruett-Miller S. M.; Zhang G.-F.; Karner C. M. SLC38A2 Provides Proline to Fulfill Unique Synthetic Demands Arising during Osteoblast Differentiation and Bone Formation. Elife 2022, 11, e76963.10.7554/eLife.76963. PubMed DOI PMC

Timlin J. A.; Carden A.; Morris M. D.; Bonadio J. F.; Hoffler C. E.; Kozloff K. M.; Goldstein S. A. Spatial Distribution of Phosphate Species in Mature and Newly Generated Mammalian Bone by Hyperspectral Raman Imaging. J. Biomed Opt 1999, 4 (1), 28.10.1117/1.429918. PubMed DOI

Matusiewicz H. Potential Release of in Vivo Trace Metals from Metallic Medical Implants in the Human Body: From Ions to Nanoparticles-a Systematic Analytical Review. Acta Biomater 2014, 10 (6), 2379–2403. 10.1016/j.actbio.2014.02.027. PubMed DOI

Mackenzie E. L.; Iwasaki K.; Tsuji Y. Intracellular Iron Transport and Storage: From Molecular Mechanisms to Health Implications. Antioxid Redox Signal 2008, 10 (6), 997–1030. 10.1089/ars.2007.1893. PubMed DOI PMC

Jeney V. Clinical Impact and Cellular Mechanisms of Iron Overload-Associated Bone Loss. Front Pharmacol 2017, 8, 77.10.3389/fphar.2017.00077. PubMed DOI PMC

Balogh E.; Paragh G.; Jeney V. Influence of Iron on Bone Homeostasis. Pharmaceuticals 2018, 11 (4), 107.10.3390/ph11040107. PubMed DOI PMC

Budis H.; Kalisinska E.; Lanocha N.; Kosik-Bogacka D.; Sokolowski S.; Dobiecki K.; Kolodziej L.; Bohatyrewicz A. The Concentration of Manganese, Iron, and Strontium in Hip Joint Bone Obtained from Patients Undergoing Hip Replacement Surgery. Journal of Trace Elements in Medicine and Biology 2014, 28 (1), 39–44. 10.1016/j.jtemb.2013.07.004. PubMed DOI

Zioła-Frankowska A.; Kubaszewski Ł.; Dąbrowski M.; Kowalski A.; Rogala P.; Strzyzewski W.; Łabędź W.; Uklejewski R.; Novotny K.; Kanicky V.; Frankowski M. The Content of the 14 Metals in Cancellous and Cortical Bone of the Hip Joint Affected by Osteoarthritis. Biomed Res. Int. 2015, 2015, 815648.10.1155/2015/815648. PubMed DOI PMC

Glenske K.; Donkiewicz P.; Köwitsch A.; Milosevic-Oljaca N.; Rider P.; Rofall S.; Franke J.; Jung O.; Smeets R.; Schnettler R.; Wenisch S.; Barbeck M. Applications of Metals for Bone Regeneration. Int. J. Mol. Sci. 2018, 19 (3), 826.10.3390/ijms19030826. PubMed DOI PMC

Knutson M. D. Iron Transport Proteins: Gateways of Cellular and Systemic Iron Homeostasis. J. Biol. Chem. 2017, 292 (31), 12735–12743. 10.1074/jbc.R117.786632. PubMed DOI PMC

Lertsuwan K.; Nammultriputtar K.; Nanthawuttiphan S.; Tannop N.; Teerapornpuntakit J.; Thongbunchoo J.; Charoenphandhu N. Differential Effects of Fe2+ and Fe3+ on Osteoblasts and the Effects of 1,25(OH)2D3, Deferiprone and Extracellular Calcium on Osteoblast Viability under Iron-Overloaded Conditions. PLoS One 2020, 15 (5), e023400910.1371/journal.pone.0234009. PubMed DOI PMC

Andronowski J. M.; Mundorff A. Z.; Davis R. A.; Price E. W. Application of X-Ray Photoelectron Spectroscopy to Examine Surface Chemistry of Cancellous Bone and Medullary Contents to Refine Bone Sample Selection for Nuclear DNA Analysis. J. Anal At Spectrom 2019, 34 (10), 2074–2082. 10.1039/C9JA00203K. DOI

Porter A. E.; Patel N.; Skepper J. N.; Best S. M.; Bonfield W. Effect of Sintered Silicate-Substituted Hydroxyapatite on Remodelling Processes at the Bone-Implant Interface. Biomaterials 2004, 25 (16), 3303–3314. 10.1016/j.biomaterials.2003.10.006. PubMed DOI

Von Euw S.; Wang Y.; Laurent G.; Drouet C.; Babonneau F.; Nassif N.; Azaïs T. Bone Mineral: New Insights into Its Chemical Composition. Scientific Reports 2019, 9 (1), 8456.10.1038/s41598-019-44620-6. PubMed DOI PMC

Brunette D. M., Tengvall P., Textor M., Thomsen P., Eds. Titanium in Medicine, Material Science, Surface Science, Engineering, Biological Responses, and Medical Applications; Springer- Verlag: Heidelberg and Berlin, 2000; pp 171–222.

Tao X.; Yuan X.; Huang L.; Shang S.; Xu D. Fe-Based Metal-Organic Frameworks as Heterogeneous Catalysts for Highly Efficient Degradation of Wastewater in Plasma/Fenton-like Systems. RSC Adv. 2020, 10 (60), 36363–36370. 10.1039/D0RA07402K. PubMed DOI PMC

Surface Analysis Methods in Materials Science; O’Connor D. J., Sexton B. A., Smart R. S. C., Eds.; Springer, 1992; Vol. 23,10.1007/978-3-662-02767-7. DOI

Honda S.; Shimizu T.; Sakamoto I.; Une T.; Kawabata K. Mossbauer and XPS Analysis of Fe-SiO2 and Fe-SiO2/SiO2 Granular Films. Microscopy and Microanalysis 2002, 8 (S02), 1366–1367. 10.1017/S143192760210345X. DOI

Liu Y.; Shen J.; Zhao L.; Wang W.; Gong W.; Zheng F. Zinc-Iron Silicate for Heterogeneous Catalytic Ozonation of Acrylic Acid: Efficiency and Mechanism. RSC Adv. 2020, 10 (15), 9146–9154. 10.1039/D0RA00308E. PubMed DOI PMC

Yamashita T.; Hayes P. Analysis of XPS Spectra of Fe2+ and Fe3+ Ions in Oxide Materials. Appl. Surf. Sci. 2008, 254 (8), 2441–2449. 10.1016/j.apsusc.2007.09.063. DOI

Grynpas M. Age and Disease-Related Changes in the Mineral of Bone. Calcif Tissue Int. 1993, 53 (Suppl 1), S57–64. 10.1007/BF01673403. PubMed DOI

Boivin G.; Meunier P. J. Changes in Bone Remodeling Rate Influence the Degree of Mineralization of Bone. Connect Tissue Res. 2002, 43 (2–3), 535–537. 10.1080/03008200290000934. PubMed DOI

Shah F. A.; Wang X.; Thomsen P.; Grandfield K.; Palmquist A. High-Resolution Visualization of the Osteocyte Lacuno-Canalicular Network Juxtaposed to the Surface of Nanotextured Titanium Implants in Human. ACS Biomater Sci. Eng. 2015, 1 (5), 305–313. 10.1021/ab500127y. PubMed DOI

Martin R. B. Toward a Unifying Theory of Bone Remodeling. Bone 2000, 26 (1), 1–6. 10.1016/S8756-3282(99)00241-0. PubMed DOI

Ude C. C.; Esdaille C. J.; Ogueri K. S.; Kan H. M.; Laurencin S. J.; Nair L. S.; Laurencin C. T. The Mechanism of Metallosis After Total Hip Arthroplasty. Regen Eng. Transl Med. 2021, 7 (3), 247.10.1007/s40883-021-00222-1. PubMed DOI PMC

Seref-Ferlengez Z.; Kennedy O. D.; Schaffler M. B. Bone Microdamage, Remodeling and Bone Fragility: How Much Damage Is Too Much Damage?. Bonekey Rep 2015, 4, 644.10.1038/bonekey.2015.11. PubMed DOI PMC

Pardo A.; Merino M. C.; Coy A. E.; Viejo F.; Arrabal R.; Matykina E. Effect of Mo and Mn Additions on the Corrosion Behaviour of AISI 304 and 316 Stainless Steels in H2SO4. Corros. Sci. 2008, 50 (3), 780–794. 10.1016/j.corsci.2007.11.004. DOI

Inoue M.; Yoshida H.; Akisaka T. Visualization of Acidic Compartments in Cultured Osteoclasts by Use of an Acidotrophic Amine as a Marker for Low PH. Cell and Tissue Research 1999 298:3 1999, 298 (3), 527–537. 10.1007/s004419900102. PubMed DOI

Clarke B. Normal Bone Anatomy and Physiology. Clin J. Am. Soc. Nephrol 2008, 3 (Suppl 3), S131–9. 10.2215/CJN.04151206. PubMed DOI PMC

Kenkre J. S.; Bassett J. H. D. The Bone Remodelling Cycle. Ann. Clin Biochem 2018, 55 (3), 308–327. 10.1177/0004563218759371. PubMed DOI

Rauner M.; Baschant U.; Roetto A.; Pellegrino R. M.; Rother S.; Salbach-Hirsch J.; Weidner H.; Hintze V.; Campbell G.; Petzold A.; Lemaitre R.; Henry I.; Bellido T.; Theurl I.; Altamura S.; Colucci S.; Muckenthaler M. U.; Schett G.; Komla-Ebri D. S. K.; Bassett J. H. D.; Williams G. R.; Platzbecker U.; Hofbauer L. C. Transferrin Receptor 2 Controls Bone Mass and Pathological Bone Formation via BMP and Wnt Signaling. Nat. Metab 2019, 1 (1), 111–124. 10.1038/s42255-018-0005-8. PubMed DOI PMC

Ishii K. A.; Fumoto T.; Iwai K.; Takeshita S.; Ito M.; Shimohata N.; Aburatani H.; Taketani S.; Lelliott C. J.; Vidal-Puig A.; Ikeda K. Coordination of PGC-1beta and Iron Uptake in Mitochondrial Biogenesis and Osteoclast Activation. Nat. Med. 2009, 15 (3), 259–266. 10.1038/nm.1910. PubMed DOI

Manolagas S. C. From Estrogen-Centric to Aging and Oxidative Stress: A Revised Perspective of the Pathogenesis of Osteoporosis. Endocr Rev. 2010, 31 (3), 266–300. 10.1210/er.2009-0024. PubMed DOI PMC

Ledesma-Colunga M. G.; Weidner H.; Vujic Spasic M.; Hofbauer L. C.; Baschant U.; Rauner M. Shaping the Bone through Iron and Iron-Related Proteins. Semin Hematol 2021, 58 (3), 188–200. 10.1053/j.seminhematol.2021.06.002. PubMed DOI

Schaffler M. B.; Kennedy O. D. Osteocyte Signaling in Bone. Curr. Osteoporos Rep 2012, 10 (2), 118–125. 10.1007/s11914-012-0105-4. PubMed DOI PMC

Iacopetta B. J.; Morgan E. H. The Kinetics of Transferrin Endocytosis and Iron Uptake from Transferrin in Rabbit Reticulocytes. J. Biol. Chem. 1983, 258 (15), 9108–9115. 10.1016/S0021-9258(17)44637-0. PubMed DOI

Price C. T.; Koval K. J.; Langford J. R. Silicon: A Review of Its Potential Role in the Prevention and Treatment of Postmenopausal Osteoporosis. Int. J. Endocrinol 2013, 316783.10.1155/2013/316783. PubMed DOI PMC

Jugdaohsingh R.; Pedro L. D.; Watson A.; Powell J. J. Silicon and Boron Differ in Their Localization and Loading in Bone. Bone Rep 2015, 1, 9.10.1016/j.bonr.2014.10.002. PubMed DOI PMC

Acker J.; Bohmhammel K.; Van Den Berg G. J. K.; Van Miltenburg J. C.; Kloc C. Thermodynamic Properties of Iron Silicides FeSi Andα-FeSi2. J. Chem. Thermodyn 1999, 31 (12), 1523–1536. 10.1006/jcht.1999.0550. DOI

Kematick R. J.; Myers C. E. Thermodynamics of the Phase Formation of The Titanium Silicides. Chem. Mater. 1996, 8, 287–291. 10.1021/cm950386q. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...