Analysis of local molecular motions of aromatic sidechains in proteins by 2D and 3D fast MAS NMR spectroscopy and quantum mechanical calculations
Language English Country England, Great Britain Media print
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
1P30GM110758-01
NIGMS NIH HHS - United States
R01 GM085306
NIGMS NIH HHS - United States
R01GM085306
NIGMS NIH HHS - United States
P50 GM082251
NIGMS NIH HHS - United States
P30 GM110758
NIGMS NIH HHS - United States
P50GM082251
NIGMS NIH HHS - United States
PubMed
26451400
PubMed Central
PMC4890705
DOI
10.1039/c5cp04475h
Knihovny.cz E-resources
- MeSH
- Cytoplasmic Dyneins chemistry MeSH
- Carbon Isotopes chemistry MeSH
- Quantum Theory MeSH
- Models, Molecular MeSH
- Nuclear Magnetic Resonance, Biomolecular MeSH
- Peptides chemistry MeSH
- Receptors, GABA-B chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Cytoplasmic Dyneins MeSH
- Carbon Isotopes MeSH
- Peptides MeSH
- Receptors, GABA-B MeSH
We report a new multidimensional magic angle spinning NMR methodology, which provides an accurate and detailed probe of molecular motions occurring on timescales of nano- to microseconds, in sidechains of proteins. The approach is based on a 3D CPVC-RFDR correlation experiment recorded under fast MAS conditions (ν(R) = 62 kHz), where (13)C-(1)H CPVC dipolar lineshapes are recorded in a chemical shift resolved manner. The power of the technique is demonstrated in model tripeptide Tyr-(d)Ala-Phe and two nanocrystalline proteins, GB1 and LC8. We demonstrate that, through numerical simulations of dipolar lineshapes of aromatic sidechains, their detailed dynamic profile, i.e., the motional modes, is obtained. In GB1 and LC8 the results unequivocally indicate that a number of aromatic residues are dynamic, and using quantum mechanical calculations, we correlate the molecular motions of aromatic groups to their local environment in the crystal lattice. The approach presented here is general and can be readily extended to other biological systems.
Department of Chemistry and Biochemistry University of Delaware Newark Delaware USA
Institute of Organic Chemistry and Biochemistry AS CR Flemingovo nam 2 Prague Czech Republic
See more in PubMed
Renault M, Cukkemane A, Baldus M. Angew Chem Int Ed. 2010;49:8346–8357. PubMed
Weingarth M, Baldus M. Accounts Chem Res. 2013;46:2037–2046. PubMed
Tang M, Comellas G, Rienstra CM. Accounts Chem Res. 2013;46:2080–2088. PubMed
Yan S, Suiter CL, Hou G, Zhang HL, Polenova T. Accounts Chem Res. 2013;46:2047–2058. PubMed PMC
Loquet A, Habenstein B, Lange A. Accounts Chem Res. 2013;46:2070–2079. PubMed
Goldbourt A. Curr Opin Biotechnol. 2013;24:705–715. PubMed
Asami S, Reif B. Accounts Chem Res. 2013;46:2089–2097. PubMed
Torchia AD. J Magn Reson. 2011;212:1–10. PubMed
Kobayashi T, Mao K, Paluch P, Nowak-Krol A, Sniechowska J, Nishiyama Y, Gryko DT, Potrzebowski MJ, Pruski M. Angew Chem Int Ed. 2013;52:14108–14111. PubMed
Agarwal V, Penzel S, Szekely K, Cadalbert R, Testori E, Oss A, Past J, Samoson A, Ernst M, Bockmann A, Meier BH. Angew Chem Int Ed. 2014;53:12253–12256. PubMed
Wang Q, Lu X, Lafon O, Trebosc J, Deng F, Hu B, Chen Q, Amoureux JP. Phys Chem Chem Phys. 2011;13:5967-59–73. PubMed
Hou G, Lu X, Vega AJ, Polenova T. Chem Phys. 2014;141:104202. PubMed PMC
Gansmüller A, Simorre JP, Hediger S. J Magn Reson. 2013;234:54–164. PubMed
Cobo MF, Reichert D, Saalwächter K, deAzevedo ER. J Magn Reson. 2014;248:115–125. PubMed
Schanda P, Meier BH, Ernst M. J Magn Reson. 2011;210:246–259. PubMed
Levitt MH. Encyclopedia of Magnetic Resonance. 2007. Symmetry-Based Pulse Sequence in Magic-Angle Spinning Solid-State NMR.
Hou G, Byeon IJL, Ahn J, Gronenborn AM, Polenova T. J Chem Phys. 2012;137:134201. PubMed PMC
Hou G, Lu X, Vega AJ, Polenova T. J Chem Phys. 2014;141:104202. PubMed PMC
Paluch P, Pawlak T, Amoureux JP, Potrzebowski MJ. J Magn Reson. 2013;233:56–63. PubMed
Paluch P, Trebosc J, Nishiyama Y, Potrzebowski MJ, Malon M, Amoureux JP. J Magn Reson. 2015;252:67–77. PubMed
Park HP, Yang C, Opella SJ, Mueller JM. J Magn Reson. 2013;237:164–168. PubMed PMC
Zhang R, Damron J, Vosegaard T, Ramamoorthy A. J Magn Reson. 2015;250:37–44. PubMed PMC
Slabicki MM, Potrzebowski MJ, Bujacz G, Olejniczak S, Olczak J. J Phys Chem B. 2004;108:4535–4545.
Sun S, Butterworth AH, Paramasivam S, Yan S, Lightcap CM, Williams JC, Polenova T. Can J Chem. 2011;89:909–918. PubMed PMC
Thakur RS, Kurur ND, Madhu PK. Chem Phys Lett. 2006;426:459–463.
Thakur RS, Kurur ND, Madhu PK. J Magn Res. 2008;193:77–88. PubMed
Shen M, Hu B, Lafon O, Trébosc J, Chen Q, Amoureux JP. J Magn Reson. 2012;223:107–119. PubMed
Stejskal EO, Schaefer J, Waugh JS. J Magn Reson. 1977;28:105–112.
Meier H. Chem Phys Lett. 1992;188:201–207.
Wu X, Zilm KW. J Magn Reson A. 1993;104:154–165.
Marica F, Snider RF. Solid State Nucl Magn Reson. 2003;23:28–49. PubMed
Schanda P, Huber M, Boisbouvier J, Meier BH, Ernst M. Angew Chem Int Ed. 2011;50:11005–11009. PubMed
Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MJ, Refson K, Payne MC. Z Kristallogr. 2005;220:567–570.
Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett. 1996;77:3865–3868. PubMed
Monkhorst HJ, Pack JD. Phys Rev B. 1976;13:5188–5192.
Allen FH. Acta Cryst B. 2002;58:380–388. PubMed
McNellis ER, Meyer J, Reuter K. Phys Rev B. 2009;80:205414.
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian, Inc; Wallingford CT: 2009.
Schmidt HLF, Sperling LJ, Gao YG, Wylie BJ, Boettcher JM, Wilson SR, Rienstra CA. J Phys Chem B. 2007;111:14362–14369. PubMed PMC
Pawlak T, Trzeciak-Karlikowska K, Czernek J, Ciesielski W, Potrzebowski MJ. J Phys Chem B. 2012;116:1974–1983. PubMed
Kamihira M, Naito A, Tuzi S, Saito HJ. Phys Chem A. 1999;103:3356–3363.
Naito A, Iizuka T, Tuzi S, Price WS, Hayamizu K, Saito H. J Mol Struct. 1995;355:55–60.
Rapp, Schnell I, Sebastiani D, Brown SP, Percec V, Spiess HW. J Am Chem Soc. 2003;125:13284–13297. PubMed
Moseleyl HNB, Sperling LJ, Rienstra CM. J Biomol NMR. 2010;48:123–128. PubMed PMC
Zhou H, Shah G, Cormos M, Mullen C, Sando D, Rienstra CM. J Am Chem Soc. 2007;129:11791. PubMed
Chen LJ, Kaiser M, Lai J, Polenova T, Yang J, Rienstra CM, Mueller L. J Magn Reson Chem. 2007;45:84–92. PubMed
Franks WT, Zhou DH, Wylie BJ, Money BG, Graesser DT, Frericks HL, Sahota G, Rienstra CM. J Am Chem Soc. 2005;127:12291–12305. PubMed
Hou G, Byeon IL, Ahn J, Gronenborn AM, Polenova T. J Am Chem Soc. 2011;133:18646–18655. PubMed PMC
Hou G, Paramasivam S, Byeon IL, Gronenborn AM, Polenova T. Phys Chem Chem Phys. 2010;12:14873–14883. PubMed PMC
Sun SJ, Butterworth AH, Paramasivam S, Yan S, Lightcap CM, Williams JC, Polenova T. Can J Chem. 2011;89:909–918. PubMed PMC
Guo C, Hou G, Lu X, O’Hare B, Struppe J, Polenova T. J Biomol NMR. 2014;60:219–229. PubMed PMC
Karplus M, McCammon JA. Nat Struct Biol. 2002;9:646– 652. PubMed
Klepeis JL, Lindorff-Larsen K, Dror RO, Shaw DE. Curr Opin Struct Biol. 2009;19:120–127. PubMed
Abriata LA, Dal Peraro M. Scientific Reports. 2015;5:10549. doi: 10.1038/srep10549. PubMed DOI PMC
Dračínský M, Jansa P, Ahonen K, Buděšínský M. Eur J Org Chem. 2011:1544–1551.
Hunter A, Anders JKM. J Am Chem Soc. 1990;112:5525–5534.