The CD8+ cell non-cytotoxic antiviral response affects RNA polymerase II-mediated human immunodeficiency virus transcription in infected CD4+ cells
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 A056992
PHS HHS - United States
PubMed
26499373
PubMed Central
PMC4772706
DOI
10.1099/jgv.0.000326
Knihovny.cz E-zdroje
- MeSH
- CD4-pozitivní T-lymfocyty virologie MeSH
- CD8-pozitivní T-lymfocyty imunologie MeSH
- genetická transkripce * MeSH
- HIV imunologie fyziologie MeSH
- kohortové studie MeSH
- kokultivační techniky MeSH
- kultivované buňky MeSH
- lidé MeSH
- RNA-polymerasa II metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- RNA-polymerasa II MeSH
A CD8+ cell non-cytotoxic antiviral response (CNAR), mediated by a CD8+ cell antiviral factor (CAF), is associated with a long-term healthy state in human immunodeficiency virus (HIV) infection. CNAR/CAF reduces viral transcription without a known effect on specific viral sequences in the HIV genome. In studies to define the mechanism involved in the block in viral transcription, we now report that transcription from the HIV-LTR reporter is reduced in infected CD4+ cells upon treatment with CAF. In agreement with this observation, the amount of RNA polymerase II (RNAPII) on the HIV promoter and other viral regions was strongly diminished in HIV-infected CD4+ cells co-cultivated with CNAR-expressing CD8+ cells. These results demonstrate further that CNAR/CAF has a specific role in regulating HIV transcription and a step during the preinitiation complex assembly appears to be sensitive to CNAR/CAF.
Zobrazit více v PubMed
Barker E., Mackewicz C. E., Reyes-Terán G., Sato A., Stranford S. A., Fujimura S. H., Christopherson C., Chang S. Y., Levy J. A. (1998). Virological and immunological features of long-term human immunodeficiency virus-infected individuals who have remained asymptomatic compared with those who have progressed to acquired immunodeficiency syndrome Blood 92 3105–3114 . PubMed
Blazek D., Barboric M., Kohoutek J., Oven I., Peterlin B. M. (2005). Oligomerization of HEXIM1 via 7SK snRNA and coiled-coil region directs the inhibition of P-TEFb Nucleic Acids Res 33 7000–7010 10.1093/nar/gki997 . PubMed DOI PMC
Blazek D., Kohoutek J., Bartholomeeusen K., Johansen E., Hulinkova P., Luo Z., Cimermancic P., Ule J., Peterlin B. M. (2011). The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes Genes Dev 25 2158–2172 10.1101/gad.16962311 . PubMed DOI PMC
Bonneau K. R., Ng S., Foster H., Choi K. B., Berkhout B., Rabson A., Mackewicz C. E., Levy J. A. (2008). Derivation of infectious HIV-1 molecular clones with LTR mutations: sensitivity to the CD8+ cell noncytotoxic anti-HIV response Virology 373 30–38 10.1016/j.virol.2007.11.003 . PubMed DOI
Brady J., Kashanchi F. (2005). Tat gets the green light on transcription initiation Retrovirology 2 69 10.1186/1742-4690-2-69 . PubMed DOI PMC
Brinchmann J. E., Gaudernack G., Vartdal F. (1990). CD8+ T cells inhibit HIV replication in naturally infected CD4+ T cells. Evidence for a soluble inhibitor J Immunol 144 2961–2966 . PubMed
Chao S. H., Fujinaga K., Marion J. E., Taube R., Sausville E. A., Senderowicz A. M., Peterlin B. M., Price D. H. (2000). Flavopiridol inhibits P-TEFb and blocks HIV-1 replication J Biol Chem 275 28345–28348 10.1074/jbc.C000446200 . PubMed DOI
Chen C. H., Weinhold K. J., Bartlett J. A., Bolognesi D. P., Greenberg M. L. (1993). CD8+ T lymphocyte-mediated inhibition of HIV-1 long terminal repeat transcription: a novel antiviral mechanism AIDS Res Hum Retroviruses 9 1079–1086 10.1089/aid.1993.9.1079 . PubMed DOI
Gómez A. M., Smaill F. M., Rosenthal K. L. (1994). Inhibition of HIV replication by CD8+ T cells correlates with CD4 counts and clinical stage of disease Clin Exp Immunol 97 68–75 10.1111/j.1365-2249.1994.tb06581.x . PubMed DOI PMC
Hoffman A. D., Banapour B., Levy J. A. (1985). Characterization of the AIDS-associated retrovirus reverse transcriptase and optimal conditions for its detection in virions Virology 147 326–335 10.1016/0042-6822(85)90135-7 . PubMed DOI
Levy J. A. (1993). HIV pathogenesis and long-term survival AIDS 7 1401–1410 10.1097/00002030-199311000-00001 . PubMed DOI
Levy J. A. (2003). The search for the CD8+ cell anti-HIV factor (CAF) Trends Immunol 24 628–632 10.1016/j.it.2003.10.005 . PubMed DOI
Levy J. A., Mackewicz C. E., Barker E. (1996). Controlling HIV pathogenesis: the role of the noncytotoxic anti-HIV response of CD8+ T cells Immunol Today 17 217–224 10.1016/0167-5699(96)10011-6 . PubMed DOI
Mackewicz C. E., Ortega H. W., Levy J. A. (1991). CD8+ cell anti-HIV activity correlates with the clinical state of the infected individual J Clin Invest 87 1462–1466 10.1172/JCI115153 . PubMed DOI PMC
Mackewicz C. E., Ortega H., Levy J. A. (1994). Effect of cytokines on HIV replication in CD4+ lymphocytes: lack of identity with the CD8+ cell antiviral factor Cell Immunol 153 329–343 10.1006/cimm.1994.1032 . PubMed DOI
Mackewicz C. E., Blackbourn D. J., Levy J. A. (1995). CD8+T cells suppress human immunodeficiency virus replication by inhibiting viral transcription Proc Natl Acad Sci U S A 92 2308–2312 10.1073/pnas.92.6.2308 . PubMed DOI PMC
Mackewicz C. E., Patterson B. K., Lee S. A., Levy J. A. (2000). CD8+ cell noncytotoxic anti-human immunodeficiency virus response inhibits expression of viral RNA but not reverse transcription or provirus integration J Gen Virol 81 1261–1264 10.1099/0022-1317-81-5-1261 . PubMed DOI
Ott M., Geyer M., Zhou Q. (2011). The control of HIV transcription: keeping RNA polymerase II on track Cell Host Microbe 10 426–435 10.1016/j.chom.2011.11.002 . PubMed DOI PMC
Peterlin B. M., Price D. H. (2006). Controlling the elongation phase of transcription with P-TEFb Mol Cell 23 297–305 10.1016/j.molcel.2006.06.014 . PubMed DOI
Raha T., Cheng S. W., Green M. R. (2005). HIV-1 Tat stimulates transcription complex assembly through recruitment of TBP in the absence of TAFs PLoS Biol 3 e44 10.1371/journal.pbio.0030044 . PubMed DOI PMC
Rahl P. B., Lin C. Y., Seila A. C., Flynn R. A., McCuine S., Burge C. B., Sharp P. A., Young R. A. (2010). c-Myc regulates transcriptional pause release Cell 141 432–445 10.1016/j.cell.2010.03.030 . PubMed DOI PMC
Shridhar V., Chen Y., Gupta P. (2014). The CD8 antiviral factor (CAF) can suppress HIV-1 transcription from the long terminal repeat (LTR) promoter in the absence of elements upstream of the CATATAA box Virol J 11 130 10.1186/1743-422X-11-130 . PubMed DOI PMC
Taube R., Lin X., Irwin D., Fujinaga K., Peterlin B. M. (2002). Interaction between P-TEFb and the C-terminal domain of RNA polymerase II activates transcriptional elongation from sites upstream or downstream of target genes Mol Cell Biol 22 321–331 10.1128/MCB.22.1.321-331.2002 . PubMed DOI PMC
Tomaras G. D., Lacey S. F., McDanal C. B., Ferrari G., Weinhold K. J., Greenberg M. L. (2000). CD8+ T cell-mediated suppressive activity inhibits HIV-1 after virus entry with kinetics indicating effects on virus gene expression Proc Natl Acad Sci U S A 97 3503–3508 10.1073/pnas.97.7.3503 . PubMed DOI PMC
Walker C. M., Levy J. A. (1989). A diffusible lymphokine produced by CD8+ T lymphocytes suppresses HIV replication Immunology 66 628–630 . PubMed PMC
Walker C. M., Moody D. J., Stites D. P., Levy J. A. (1986). CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication Science 234 1563–1566 10.1126/science.2431484 . PubMed DOI