Prediction of response to anti-EGFR antibody-based therapies by multigene sequencing in colorectal cancer patients
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26508446
PubMed Central
PMC4624582
DOI
10.1186/s12885-015-1752-5
PII: 10.1186/s12885-015-1752-5
Knihovny.cz E-resources
- MeSH
- Cetuximab pharmacology therapeutic use MeSH
- Adult MeSH
- ErbB Receptors antagonists & inhibitors MeSH
- Antibodies, Monoclonal, Humanized pharmacology therapeutic use MeSH
- Colorectal Neoplasms diagnosis drug therapy genetics MeSH
- Middle Aged MeSH
- Humans MeSH
- Antibodies, Monoclonal pharmacology therapeutic use MeSH
- Biomarkers, Tumor genetics MeSH
- Panitumumab MeSH
- Predictive Value of Tests MeSH
- Antineoplastic Agents pharmacology therapeutic use MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Treatment Outcome MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cetuximab MeSH
- EGFR protein, human MeSH Browser
- ErbB Receptors MeSH
- Antibodies, Monoclonal, Humanized MeSH
- Antibodies, Monoclonal MeSH
- Biomarkers, Tumor MeSH
- Panitumumab MeSH
- Antineoplastic Agents MeSH
BACKGROUND: The anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (moAbs) cetuximab or panitumumab are administered to colorectal cancer (CRC) patients who harbor wild-type RAS proto-oncogenes. However, a percentage of patients do not respond to this treatment. In addition to mutations in the RAS genes, mutations in other genes, such as BRAF, PI3KCA, or PTEN, could be involved in the resistance to anti-EGFR moAb therapy. METHODS: In order to develop a comprehensive approach for the detection of mutations and to eventually identify other genes responsible for resistance to anti-EGFR moAbs, we investigated a panel of 21 genes by parallel sequencing on the Ion Torrent Personal Genome Machine platform. We sequenced 65 CRCs that were treated with cetuximab or panitumumab. Among these, 37 samples were responsive and 28 were resistant. RESULTS: We confirmed that mutations in EGFR-pathway genes (KRAS, NRAS, BRAF, PI3KCA) were relevant for conferring resistance to therapy and could predict response (p = 0.001). After exclusion of KRAS, NRAS, BRAF and PI3KCA combined mutations could still significantly associate to resistant phenotype (p = 0.045, by Fisher exact test). In addition, mutations in FBXW7 and SMAD4 were prevalent in cases that were non-responsive to anti-EGFR moAb. After we combined the mutations of all genes (excluding KRAS), the ability to predict response to therapy improved significantly (p = 0.002, by Fisher exact test). CONCLUSIONS: The combination of mutations at KRAS and at the five gene panel demonstrates the usefulness and feasibility of multigene sequencing to assess response to anti-EGFR moAbs. The application of parallel sequencing technology in clinical practice, in addition to its innate ability to simultaneously examine the genetic status of several cancer genes, proved to be more accurate and sensitive than the presently in use traditional approaches.
See more in PubMed
Bardelli A, Siena S. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol. 2010;28(7):1254–61. doi: 10.1200/JCO.2009.24.6116. PubMed DOI
Rampias T, Giagini A, Siolos S, Matsuzaki H, Sasaki C, Scorilas A, Psyrri A. RAS/PI3K crosstalk and cetuximab resistance in head and neck squamous cell carcinoma. Clin Cancer Res. 2014;20(11):2933–46. doi: 10.1158/1078-0432.CCR-13-2721. PubMed DOI
Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, Valtorta E, Schiavo R, Buscarino M, Siravegna G, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012;486(7404):532–6. PubMed PMC
Di Fiore F, Sesboue R, Michel P, Sabourin JC, Frebourg T. Molecular determinants of anti-EGFR sensitivity and resistance in metastatic colorectal cancer. Br J Cancer. 2010;103(12):1765–72. doi: 10.1038/sj.bjc.6606008. PubMed DOI PMC
Eklof V, Wikberg ML, Edin S, Dahlin AM, Jonsson BA, Oberg A, et al. The prognostic role of KRAS, BRAF, PIK3CA and PTEN in colorectal cancer. Br J Cancer. 2013. PubMed PMC
Benson AB, 3rd, Venook AP, Bekaii-Saab T, Chan E, Chen YJ, Cooper HS, Engstrom PF, Enzinger PC, Fenton MJ, Fuchs CS, et al. Colon cancer, version 3.2014. J Natl Compr Canc Netw. 2014;12(7):1028–59. PubMed
Network. CGA Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7. doi: 10.1038/nature11252. PubMed DOI PMC
Ion Ampliseq Designer. [https://www.ampliseq.com/browse.action].
Wong SQ, Li J, Tan AY, Vedururu R, Pang JM, Do H, Ellul J, Doig K, Bell A, MacArthur GA, et al. Sequence artefacts in a prospective series of formalin-fixed tumours tested for mutations in hotspot regions by massively parallel sequencing. BMC Med Genomics. 2014;7:23. doi: 10.1186/1755-8794-7-23. PubMed DOI PMC
NCBI dbSNP - Short Genetic Variations. [http://www.ncbi.nlm.nih.gov/projects/SNP/].
Cosmic: catalogue of somatic mutations in cancer. [http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/]. PubMed
cBio Portal for Cancer Genomics. [http://www.cbioportal.org/public-portal/].
ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. [http://www.openbioinformatics.org/annovar/]. PubMed PMC
Mutation Assessor.org - functional impact of protein mutations. [http://mutationassessor.org/].
Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M, Curran JA, Balasubramanian S, Bloom T, Brennan KW, et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med. 2012;18(3):382–4. doi: 10.1038/nm.2673. PubMed DOI PMC
Dono M, Massucco C, Chiara S, Sonaglio C, Mora M, Truini A, Cerruti G, Zoppoli G, Ballestrero A, Truini M, et al. Low percentage of KRAS mutations revealed by locked nucleic acid polymerase chain reaction: implications for treatment of metastatic colorectal cancer. Mol Med. 2012;18:1519–26. doi: 10.2119/molmed.2012.00175. PubMed DOI PMC
Ciardiello F, Normanno N, Maiello E, Martinelli E, Troiani T, Pisconti S, Giuliani F, Barone C, Carteni G, Rachiglio AM, et al. Clinical activity of FOLFIRI plus cetuximab according to extended gene mutation status by next-generation sequencing: findings from the CAPRI-GOIM trial. Ann Oncol. 2014;25(9):1756–61. doi: 10.1093/annonc/mdu230. PubMed DOI
Morelli MP, Kopetz S. Hurdles and complexities of codon 13 KRAS mutations. J Clin Oncol. 2012;30(29):3565–7. doi: 10.1200/JCO.2012.43.6535. PubMed DOI
Smith CG, Fisher D, Claes B, Maughan TS, Idziaszczyk S, Peuteman G, Harris R, James MD, Meade A, Jasani B, et al. Somatic profiling of the epidermal growth factor receptor pathway in tumors from patients with advanced colorectal cancer treated with chemotherapy +/− cetuximab. Clin Cancer Res. 2013;19(15):4104–13. doi: 10.1158/1078-0432.CCR-12-2581. PubMed DOI PMC
Wertz IE, Kusam S, Lam C, Okamoto T, Sandoval W, Anderson DJ, Helgason E, Ernst JA, Eby M, Liu J, et al. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature. 2011;471(7336):110–4. doi: 10.1038/nature09779. PubMed DOI
Wang Z, Fukushima H, Gao D, Inuzuka H, Wan L, Lau AW, Liu P, Wei W. The two faces of FBW7 in cancer drug resistance. Bioessays. 2011;33(11):851–9. doi: 10.1002/bies.201100101. PubMed DOI PMC
Iwatsuki M, Mimori K, Ishii H, Yokobori T, Takatsuno Y, Sato T, Toh H, Onoyama I, Nakayama KI, Baba H, et al. Loss of FBXW7, a cell cycle regulating gene, in colorectal cancer: clinical significance. Int J Cancer J International du cancer. 2010;126(8):1828–37. PubMed
Zhao D, Zheng HQ, Zhou Z, Chen C. The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation. Cancer Res. 2010;70(11):4728–38. doi: 10.1158/0008-5472.CAN-10-0040. PubMed DOI
Santarpia L, Qi Y, Stemke-Hale K, Wang B, Young EJ, Booser DJ, Holmes FA, O'Shaughnessy J, Hellerstedt B, Pippen J, et al. Mutation profiling identifies numerous rare drug targets and distinct mutation patterns in different clinical subtypes of breast cancers. Breast Cancer Res Treat. 2012;134(1):333–43. doi: 10.1007/s10549-012-2035-3. PubMed DOI PMC
Mansour MR, Sanda T, Lawton LN, Li X, Kreslavsky T, Novina CD, Brand M, Gutierrez A, Kelliher MA, Jamieson CH, et al. The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia. J Exp Med. 2013;210(8):1545–57. doi: 10.1084/jem.20122516. PubMed DOI PMC
King B, Trimarchi T, Reavie L, Xu L, Mullenders J, Ntziachristos P, Aranda-Orgilles B, Perez-Garcia A, Shi J, Vakoc C, et al. The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell. 2013;153(7):1552–66. doi: 10.1016/j.cell.2013.05.041. PubMed DOI PMC
Falisi E, Novella E, Visco C, Guercini N, Maura F, Giaretta I, Pomponi F, Nichele I, Finotto S, Montaldi A, et al. B-cell receptor configuration and mutational analysis of patients with chronic lymphocytic leukaemia and trisomy 12 reveal recurrent molecular abnormalities. Hematol Oncol. 2014;32(1):22–30. doi: 10.1002/hon.2086. PubMed DOI
Bedford L, Lowe J, Dick LR, Mayer RJ, Brownell JE. Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov. 2011;10(1):29–46. doi: 10.1038/nrd3321. PubMed DOI PMC
Minella AC, Welcker M, Clurman BE. Ras activity regulates cyclin E degradation by the Fbw7 pathway. Proc Natl Acad Sci U S A. 2005;102(27):9649–54. doi: 10.1073/pnas.0503677102. PubMed DOI PMC
Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H, Ishida N, Okumura F, Nakayama K, Nakayama KI. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 2004;23(10):2116–25. doi: 10.1038/sj.emboj.7600217. PubMed DOI PMC
Hoeck JD, Jandke A, Blake SM, Nye E, Spencer-Dene B, Brandner S, Behrens A. Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun. Nat Neurosci. 2010;13(11):1365–72. doi: 10.1038/nn.2644. PubMed DOI
Thompson BJ, Jankovic V, Gao J, Buonamici S, Vest A, Lee JM, Zavadil J, Nimer SD, Aifantis I. Control of hematopoietic stem cell quiescence by the E3 ubiquitin ligase Fbw7. J Exp Med. 2008;205(6):1395–408. doi: 10.1084/jem.20080277. PubMed DOI PMC
Fu L, Kim YA, Wang X, Wu X, Yue P, Lonial S, Khuri FR, Sun SY. Perifosine inhibits mammalian target of rapamycin signaling through facilitating degradation of major components in the mTOR axis and induces autophagy. Cancer Res. 2009;69(23):8967–76. doi: 10.1158/0008-5472.CAN-09-2190. PubMed DOI PMC
Sancho R, Jandke A, Davis H, Diefenbacher ME, Tomlinson I, Behrens A. F-box and WD repeat domain-containing 7 regulates intestinal cell lineage commitment and is a haploinsufficient tumor suppressor. Gastroenterology. 2010;139(3):929–41. doi: 10.1053/j.gastro.2010.05.078. PubMed DOI
Berger AH, Knudson AG, Pandolfi PP. A continuum model for tumour suppression. Nature. 2011;476(7359):163–9. doi: 10.1038/nature10275. PubMed DOI PMC
ArrayExpress. [https://www.ebi.ac.uk/arrayexpress/].