• This record comes from PubMed

Molecular and Morphological Evidence Challenges the Records of the Extant Liverwort Ptilidium pulcherrimum in Eocene Baltic Amber

. 2015 ; 10 (11) : e0140977. [epub] 20151104

Language English Country United States Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

Preservation of liverworts in amber, a fossilized tree resin, is often exquisite. Twenty-three fossil species of liverworts have been described to date from Eocene (35-50 Ma) Baltic amber. In addition, two inclusions have been assigned to the extant species Ptilidium pulcherrimum (Ptilidiales or Porellales). However, the presence of the boreal P. pulcherrimum in the subtropical or warm-temperate Baltic amber forest challenges the phytogeographical interpretation of the Eocene flora. A re-investigation of one of the fossils believed to be P. pulcherrimum reveals that this specimen in fact represents the first fossil evidence of the genus Tetralophozia, and thus is re-described here as Tetralophozia groehnii sp. nov. A second fossil initially assigned to P. pulcherrimum is apparently lost, and can be reassessed only based on the original description and illustrations. This fossil is morphologically similar to the extant North Pacific endemic Ptilidium californicum, rather than P. pulcherrimum. Divergence time estimates based on chloroplast DNA sequences provide evidence of a Miocene origin of P. pulcherrimum, and thus also argue against the presence of this taxon in the Eocene. Ptilidium californicum originated 25-43 Ma ago. As a result, we cannot rule out that the Eocene fossil belongs to P. californicum. Alternatively, the fossil might represent a stem lineage element of Ptilidium or an early crown group species with morphological similarities to P. californicum.

See more in PubMed

Kenrick P, Crane PR. The origin and early evolution of plants on land. Nature 1997; 389: 33–39.

Wellman CH, Osterloff PL, Mohiuddin U. Fragments of the earliest land plants. Nature 2003; 425: 282–285. PubMed

Nishiyama T, Wolf PG, Kugita M, Sinclair RB, Sugita M, Sugiura C, et al. Chloroplast phylogeny indicates that bryophytes are monophyletic. Molec Biol Evol 2004; 21: 1813–1819. PubMed

Goremykin VV, Hellwig FH. Evidence for the most basal split in land plants dividing bryophyte and tracheophyte lineages. Pl Syst Evol 2005; 254: 93–103.

Groth-Malonek M, Pruchner M, Grewe F, Knoop V. Ancestors of trans-splicing mitochondrial introns support serial sister group relationships of hornworts and mosses with vascular plants. Molec Biol Evol 2006; 22: 117–125. PubMed

Qiu YL, Li L, Wang B, Chen Z, Knoop V, Groth-Malonek M, et al. The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci USA 2006; 103: 15511–15516. PubMed PMC

Cox CJ, Li B, Foster PG, Embley TM, Civáň P. Conflicting phylogenies for early land plants are caused by composition biases among synonymous substitutions. Syst Biol 2014; 63: 272–279. 10.1093/sysbio/syt109 PubMed DOI PMC

Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, et al. Phylotranscriptomic analysis of the origin and early evolution of land plants. Proc Natl Acad Sci USA 2014; 111: E4859–E4868. 10.1073/pnas.1323926111 PubMed DOI PMC

Taylor TN, Taylor E, Krings M. Paleobotany. The Biology and Evolution of Fossil Plants. Burlington: Academic Press; 2009.

Kenrick P, Wellman CA, Schneider H, Edgecombe GD. A timeline for terrestrialization: consequences for the Carbon cycle in the Palaeozoic. Phil Trans Royal Soc B, Biol Sci 2012; 367, 519–536. PubMed PMC

Clarke J, Warnock RCM, Donoghue PCJ. Establishing a time-scale for plant evolution. New Phytol 2011; 192, 266–301. 10.1111/j.1469-8137.2011.03794.x PubMed DOI

Wodniok S, Brinkmann H, Glöckner G, Heidel AJ, Philippe H, Melkonian M, et al. Origin of land plants. Do conjugating green algae hold the key? BMC Evol Biol 2011; 11: 104 10.1186/1471-2148-11-104 PubMed DOI PMC

Heinrichs J, Hentschel J, Wilson R, Feldberg K, Schneider H. Evolution of leafy liverworts (Jungermanniidae, Marchantiophyta): estimating divergence times from chloroplast DNA sequences using penalized likelihood with integrated fossil evidence. Taxon 2007; 56: 31–44.

Fiz-Palacios O, Schneider H, Heinrichs J, Savolainen V. Diversification of land plants: insights from a family-level phylogenetic analysis. BMC Evol Biol 2011; 11: 341 10.1186/1471-2148-11-341 PubMed DOI PMC

Cooper ED, Henwood MJ, Brown EA. Are the liverworts really that old? Cretaceous origins and Cenozoic diversifications in Lepidoziaceae reflect a recurrent theme in liverwort evolution. Biol J Linn Soc 2012; 107: 425–441.

Feldberg K, Schneider H, Stadler T, Schäfer-Verwimp A, Schmidt AR, Heinrichs J. Epiphytic leafy liverworts diversified in angiosperm-dominated forests. Sci Rep 2014; 4: 5974 10.1038/srep05974 PubMed DOI PMC

Laenen B, Shaw B, Schneider H, Goffinet B, Paradis E, Désamoré A, et al. Extant diversity of bryophytes emerged from successive post-Mesozoic diversification bursts. Nature Com 2014; 5: 6134. PubMed

Sun Y, He X, Glenny D. Transantarctic disjunctions in Schistochilaceae (Marchantiophyta) explained by early extinction events, post-Gondwanan radiations and palaeoclimatic changes. Mol Phylogenet Evol 2014; 76: 189–201. 10.1016/j.ympev.2014.03.018 PubMed DOI

Parham JF, Donoghue PC, Bell CJ, Calway TD, Head JJ, Holroyd PA, et al. Best practices for justifying fossil calibrations. Syst Biol 2012; 61: 346–359. 10.1093/sysbio/syr107 PubMed DOI PMC

Krassilov VA, Schuster RM. Paleozoic and Mesozoic fossils In: Schuster RM, editor. New Manual of Bryology. Nichinan: The Hattori Botanical Laboratory; 1984. pp. 1172–1193.

Oostendorp C. The bryophytes of the Paleozoic and Mesozoic. Bryophyt Bibl 1987; 34: 5–112, Plates I–XLIX.

Schuster RM, Janssens JA. On Diettertia, an isolated Mesozoic member of the Jungermanniales. Rev Palaeobot Palynol 1989; 57: 277–287.

Heinrichs J, Schäfer-Verwimp A, Feldberg K, Schmidt AR. The extant liverwort Gackstroemia (Lepidolaenaceae, Porellales) in Cretaceous amber from Myanmar. Rev Palaeobot Palynol 2014; 203: 48–52.

Heinrichs J, Kettunen E, Lee GE, Marzaro G, Pócs T, Ragazzi E, et al. Lejeuneaceae (Marchantiophyta) from a species-rich taphocoenosis in Miocene Mexican amber, with a review of liverworts fossilised in amber. Rev Palaeobot Palynol 2015; 221: 59–70.

Penney D. (editor) Biodiversity of fossils in amber from the major world deposits Manchester: Siri Scientific Press; 2010.

Weitschat W, Wichard W. Baltic amber In: Penney D, editor. Biodiversity of fossils in amber from the major world deposits. Manchester: Siri Scientific Press; 2010. pp. 80–115.

Standke G. Die Tertiärprofile der Samländischen Bernsteinküste bei Rauschen. Schriftenreihe für Geowissenschaften 1998; 7: 93–133.

Standke G. Bitterfelder Bernstein gleich Baltischer Bernstein?–Eine geologische Raum-Zeit-Betrachtung und genetische Schlußfolgerungen. Exkurs.f. und Veröfftl. DGG 2008; 236: 11–33.

Garrett RM. Precious stones in old English literature Naumburg a. S.: Lippert & Co.; 1909.

Wolfe AP, Tappert R, Muehlenbachs K, Boudreau M, McKellar RC, Basinger JF, et al. A new proposal concerning the botanical origin of Baltic amber. Proc Royal Soc B: Biol Sci 2009; 276: 3403–3412. PubMed PMC

Frahm JP. Die Laubmoosflora des Baltischen Bernsteinwaldes. Jena, Weissdorn; 2010.

Conwentz H. Monographie der Baltischen Bernsteinbäume Vergleichende Untersuchungen über die Vegetationsorgane und Blüten, sowie über das Harz und die Krankheiten der baltischen Bernsteinbäume. Leipzig, Engelmann; 1890.

Sendel N. Historia succinorum corpora aliena involventium et nature opere pictorum et caelatorum ex Augustorum I et II cimeliis Dresdae conditis aeri insculptorum Leipzig: Gleditsch; 1742.

Goeppert HR, Berendt GC. Der Bernstein und die in ihm befindlichen Pflanzenreste der Vorwelt Berlin: Nicolai; 1845.

Caspary R. Einige neue Pflanzenreste aus dem samländischen Bernstein. Schr Physik-Ökonom Ges (Abh) 1887; 27: 1–8.

Caspary R, Klebs R. Die Flora des Bernsteins. Abh Preuss Geol Landesanst NF 1907; 4: 11–182.

Mägdefrau K. Flechten und Moose im Baltischen Bernstein. Ber Dt Bot Ges 1957; 79: 433–435.

Grolle R. Lebermoose im Bernstein 1. Feddes Repert 1980; 91: 183–190.

Grolle R, Meister K. The liverworts in Baltic and Bitterfeld amber Jena, Weissdorn; 2004.

Schuster RM. The Hepaticae and Anthocerotae of North America. Vol. 1 New York: Columbia University Press; 1966.

Kreier HP, Feldberg K, Mahr F, Bombosch A, Schmidt AR, et al. Phylogeny of the leafy liverwort Ptilidium: cryptic speciation and shared haplotypes between the Northern and Southern Hemispheres. Mol Phylogenet Evol 2010; 57: 1260–1267. 10.1016/j.ympev.2010.10.002 PubMed DOI

Pearson PN, van Dongen BE, Nicholas CJ, Pancost RD, Schouten S, Singano JM, et al. Stable warm tropical climate through the Eocene epoch. Geology 2007; 35: 211–214.

Frahm JP, Gröhn C. Neue Nachweise von Moosen aus baltischem Bernstein. Arch Bryol. 2013;175: 1–8.

Liu Y, Jia Y, Wang W, Chen Z-D, Davis EC, Qiu Y-J. Phylogenetic relationships of two endemic genera from East Asia. Trichocoleopsis and Neotrichocolea (Hepaticae). Ann Missouri Bot Gard 2008; 95: 459–470.

Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1998; 41: 95–98.

Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUTi and the BEAST 1.7. Molec Biol Evol 2012; 29: 1969–1973. 10.1093/molbev/mss075 PubMed DOI PMC

Rambaut A. FigTree v. 1.4.2. 2014; Available: http://tree.bio.ed.ac.uk.

Rambaut A, Suchard MA, Xie D, Drummond AJ. Tracer v1.6. 2014; Available: http://beast.bio.ed.ac.uk/Tracer.

Villarreal JC, Renner SS. 2014. A review of molecular-clock calibrations and substitution rates in liverworts, mosses, and hornworts, and a timeframe for a taxonomically cleaned-up genus Nothoceros . Mol Phylogenet Evol 2014; 78: 25–35. 10.1016/j.ympev.2014.04.014 PubMed DOI

Paton JA. The liverwort flora of the British Isles Colchester, Harley Books; 1999.

Schofield WB. Field guide to liverwort genera of Pacific North America Seattle, University of Washington Press; 2002.

Doyle WT, Stotler RE. Contributions toward a bryoflora of California III: Keys and annotated species catalogue for liverworts and hornworts. Madroño 2006; 53, 89–197.

Botting RS, Fredeen AL. Contrasting terrestrial lichen, liverwort, and moss diversity between old-growth and young second-growth forest on two soil textures in central British Columbia. Canad J Bot 2006; 84: 124–129.

Renner MAM. Lobule shape evolution in Radula (Jungermanniopsida): one rate fits all? Bot J Linn Soc 2015; 178: 222–242.

Lóriga J, Schmidt AR, Moran RC, Feldberg K, Schneider H, Heinrichs J. 2014. The first fossil of a bolbitidoid fern belongs to the early divergent lineages of Elaphoglossum (Dryopteridaceae). Am J Bot 2014; 101: 1466–1475. 10.3732/ajb.1400262 PubMed DOI

Schneider H, Schmidt AR, Nascimbene PC, Heinrichs J. A new Dominican amber fossil of the derived fern genus Pleopeltis confirms generic stasis in the epiphytic fern diversity of the West Indies. Org Divers Evol, 2015;15: 277–283.

Hartmann FA, Wilson R, Gradstein SR, Schneider H, Heinrichs J. Testing hypotheses on species delimitations and disjunctions in the liverwort Bryopteris (Jungermanniopsida: Lejeuneaceae). Int J Pl Sci 2006; 167: 1205–1214.

Wilson R, Heinrichs J, Hentschel J, Gradstein SR, Schneider H. Steady diversification of derived liverworts under Tertiary climatic fluctuations. Biol Lett 2007; 3: 566–569. PubMed PMC

Willmann R. 1985. Die Art in Raum und Zeit. Berlin, Parey; 1985.

Willerslev E, Anders HJ, Binladen J, Brand TB, Gilbert MTB, Shapiro B, et al. Diverse plant and animal genetic records from Holocene and and Pleistocene sediments. Science, 2003; 300:791–795. PubMed

Grolle R. Bryopteris bispinosa spec. nov. (Lejeuneaceae), ein weiteres Lebermoos in Dominikanischem Bernstein. J Hattori Bot Lab 1993; 74, 71–76.

Heinrichs J, Gradstein SR, Wilson R, Scheider H. Towards a natural classification of liverworts (Marchantiophyta) based on the chloroplast gene rbcL. Cryptog Bryol 2005; 26: 131–150.

Crandall-Stotler B, Stotler RE, Long DG. 2009. Phylogeny and classification of the Marchantiophyta. Edinb J Bot 2009; 66: 155–198.

Frahm J-P. Neue Moosfunde aus Baltischem Bernstein. Limprichtia 2006; 29: 119–129.

Heinrichs J, Schmidt AR, Schäfer-Verwimp A, Gröhn C, Renner MAM. The leafy liverwort Notoscyphus balticus spec. nov. (Jungermanniales) in Eocene Baltic amber. Rev Palaeobot Palynol 2015; 217: 39–44.

Katagiri T. First fossil record of the liverwort family Cephaloziaceae (Jungermanniales, Marchantiophyta) from Baltic amber. Nova Hedwigia 2015, 10.1127/nova_Hedwigia/2015/0276 DOI

Feldberg K, Heinrichs J, Schmidt AR, Váňa J, Schneider H. Exploring the impact of fossil constraints on the divergence time estimates of derived liverworts. Pl Syst Evol 2013; 299: 585–601.

Söderström L, De Roo R, Hedderson T. Taxonomic novelties resulting from recent reclassification of the Lophoziaceae/Scapaniaceae clade. Phytotaxa 2010; 3: 47–53.

Urmi E. Tetralophozia filiformis (Steph.) comb. nov. in Europa. J Bryol 1983; 12: 393–401.

Váňa J. Taxonomic results of the BRYOTROP expedition to Zaire and Rwanda 11. Cephaloziaceae, Cephaloziellaceae, Gymnomitriaceae, Jungermanniaceae, Lophoziaceae. Trop Bryol 1993; 8: 99–103.

Schuster RM. Austral Hepaticae Part II. Nova Hedwigia Beih 119; 2002: 1–606.

Schuster RM. Revisionary studies of the Chandonanthoideae (Jungermanniales, Jungermanniaceae). Nova Hedwigia 2002; 74: 465–496.

Gustafsson L, Eriksson I. Factors of importance for the epiphytic vegetation of aspen Populus tremula with special emphasis on bark chemistry and soil chemistry. J Appl Ecol 1995; 32: 412–424.

Kuusinen M, Penttinen A. Spatial pattern of the threatened epiphytic bryophyte Neckera pennata at two scales in a fragmented boreal forest. Ecography 1999; 22: 729–735.

Cleavitt NI, Dibble AC, Werrier DA. Influence of tree species on epiphytic macrolichens in temperate mixed forests of northern Italy. Can J For Res 2009;39: 785–791.

Király I, Nascimbene J, Tinya F, Ódor P. Factors influencing epiphytic bryophyte and lichen species richness at different spatial scales in managed temperate forests. Biodiv Conserv 2013;22: 209–223.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...