Work of Breathing into Snow in the Presence versus Absence of an Artificial Air Pocket Affects Hypoxia and Hypercapnia of a Victim Covered with Avalanche Snow: A Randomized Double Blind Crossover Study
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, randomizované kontrolované studie, práce podpořená grantem
PubMed
26666523
PubMed Central
PMC4682855
DOI
10.1371/journal.pone.0144332
PII: PONE-D-15-26166
Knihovny.cz E-zdroje
- MeSH
- asfyxie patofyziologie prevence a kontrola MeSH
- dechová práce fyziologie MeSH
- dechový objem fyziologie MeSH
- dospělí MeSH
- dvojitá slepá metoda MeSH
- hyperkapnie patofyziologie MeSH
- hypoxie patofyziologie MeSH
- inspirační rezervní objem fyziologie MeSH
- katastrofy * MeSH
- klinické křížové studie MeSH
- kyslík fyziologie MeSH
- laviny * MeSH
- lidé MeSH
- monitorování fyziologických funkcí MeSH
- oxid uhličitý fyziologie MeSH
- sníh MeSH
- zdraví dobrovolníci pro lékařské studie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- kyslík MeSH
- oxid uhličitý MeSH
Presence of an air pocket and its size play an important role in survival of victims buried in the avalanche snow. Even small air pockets facilitate breathing. We hypothesize that the size of the air pocket significantly affects the airflow resistance and work of breathing. The aims of the study are (1) to investigate the effect of the presence of an air pocket on gas exchange and work of breathing in subjects breathing into the simulated avalanche snow and (2) to test whether it is possible to breathe with no air pocket. The prospective interventional double-blinded study involved 12 male volunteers, from which 10 completed the whole protocol. Each volunteer underwent two phases of the experiment in a random order: phase "AP"--breathing into the snow with a one-liter air pocket, and phase "NP"--breathing into the snow with no air pocket. Physiological parameters, fractions of oxygen and carbon dioxide in the airways and work of breathing expressed as pressure-time product were recorded continuously. The main finding of the study is that it is possible to breath in the avalanche snow even with no air pocket (0 L volume), but breathing under this condition is associated with significantly increased work of breathing. The significant differences were initially observed for end-tidal values of the respiratory gases (EtO2 and EtCO2) and peripheral oxygen saturation (SpO2) between AP and NP phases, whereas significant differences in inspiratory fractions occurred much later (for FIO2) or never (for FICO2). The limiting factor in no air pocket conditions is excessive increase in work of breathing that induces increase in metabolism accompanied by higher oxygen consumption and carbon dioxide production. The presence of even a small air pocket reduces significantly the work of breathing.
Zobrazit více v PubMed
Falk M, Brugger H, Adler-Kastner L. Avalanche survival chances. Nature 1994; 368:21 PubMed
Haegeli P, Falk M, Brugger H, Etter HJ, Boyd J. Comparison of avalanche survival patterns in Canada and Switzerland. Canadian Medical Association Journal 2011, 183(7), 789–795. 10.1503/cmaj.101435 PubMed DOI PMC
Boyd J, Haegeli P, Abu-Laban RB, Shuster M, Butt JC. Patterns of death among avalanche fatalities: a 21-year review. Canadian Medical Association Journal 2009; 180:5: 507–512. 10.1503/cmaj.081327 PubMed DOI PMC
McIntosh SE, Grisom CK, Olivares CR, Kim HS, Tremper B. Cause of death in avalanche fatalities. Wilderness & Enviromental Medicine 2007; 18:4: 293–297. PubMed
Hohlrieder M, Brugger H, Schubert HM, Pavlic M, Ellerton J, Mair P. Pattern and severity of injury in avalanche victims. High Altitude Medicine & Biology 2007; 8:1: 56–61. PubMed
Grissom CK, McAlpine JC, Harmston CH, Radwin MI, Giesbrecht GG, Sholand MB, et al. Hypercapnia Effect on Core Cooling and Shivering Treshold During Snow Burial. Aviation, Space, and Environmental Medicine 2008; 79:8: 735–742. PubMed
Grissom CK, Radwin MI, Harmston CH, Hirshberg EL, Crowley TJ. Respiration during snow burial using an artificial air pocket. Jama 2000; 283:17: 2261–2271. PubMed
Windsor JS, Hamilton E, Grocott MP, O´Dwyer MJ, Milledge JS. The snow snorkel: A proof of concept study. Wilderness & Enviromental Medicine 2009; 20: 61–65. PubMed
Radwin IM, Grisom CK, Scholand MB, Harmston CH. Normal Oxygenetation and Ventilation during Snow Burial by the Exclusion of Exhaled Carbon Dioxine. Wilderness Enviromental & Medicine 2001; 12: 256–262. PubMed
Paal P, Strapazzon G, Braun P, Ellmauer PP, Schroeder DC, Suman G, et al. Factors affecting survival from avalanche burial–A randomised prospective porcine pilot study. Resuscitation 2013; 84:2: 239–243. 10.1016/j.resuscitation.2012.06.019 PubMed DOI
Brugger H, Sumann G, Meister R, Adler-Kastner L, Mair P, Gunga HC. Hypoxia and hypercapnia during respiration into an artificial air pocket in the snow: implications for avalanche survival. Rescuscitation 2003; 58: 81–88. PubMed
Brugger H, Durrer B, Adler-Kastner L, Falk M, Tschirky F. Field management of avalanche victims. Resuscitation 2001; 51: 7–15. PubMed
Brugger H, Paal P, Boyd J. Prehospital resuscitation of the buried avalanche victim. High Altitude Medicine & Biology 2011; 12(3): 199–205. PubMed
Otis AB. The Work of Breathing. J Physiological Reviews 1954; 34:3: 449–458. PubMed
American Society of Anesthesiologists, INC. New Classification of Physical Status, Anesthesiology, 1963; 24: 111.
Lumb AB. Nunn's Applied Respiratory Physiology. 7th edition Elsevier, 2012.
EN ISO 8835–2. Inhalational anesthesia systems—Part 2: Anaesthetic breathing systems. Brussel: European Comitee for Standardization, 2009.
McClung D, Schaerer PA. The Avalanche Handbook; Mountainers: Seattle, WA, 1993.
Bellani G, Patroniti N, Weismann D, Galbiati L, Curto F, Foti G, et al. Measurement of Pressure-Time Product during Spontaneous Assisted Breathing by Rapid Interrupter Technique. Anesthesiology 2007; 106: 484–90. PubMed
Field S, Sanci S, Grassino A. Respiratory muscle oxygen consumption estimated by the diaphragm pressure-time index. J Appl Physiol 1984; 57: 44–51. PubMed
Sassoon CS, Mahutte CK. Work of breathing during mechanical ventilation, Physiological Basis of Ventilatory Support. Edited by Marini JJ, Slutsky A. New York, Marcel Dekker, 1998. pp. 261–310.
Collett PW, Perry C, Engel LA. Pressure-time product, flow and oxygen cost of resistive breathing in humans. J Appl Physiol 1985; 58: 1263–72. PubMed
Pulse Oximeter Performance during Rapid Desaturation
Perlite is a suitable model material for experiments investigating breathing in high density snow