Spontaneous regression of tumour and the role of microbial infection--possibilities for cancer treatment
Language English Country England, Great Britain Media print
Document type Historical Article, Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
26813865
PubMed Central
PMC4777220
DOI
10.1097/cad.0000000000000337
Knihovny.cz E-resources
- MeSH
- Bacterial Toxins history therapeutic use MeSH
- BCG Vaccine therapeutic use MeSH
- Bifidobacterium genetics metabolism MeSH
- Clostridium genetics metabolism MeSH
- History, 17th Century MeSH
- History, 18th Century MeSH
- History, 19th Century MeSH
- History, Ancient MeSH
- Bacterial Physiological Phenomena * MeSH
- Genetic Therapy MeSH
- Combined Modality Therapy MeSH
- Lactobacillus genetics metabolism MeSH
- Humans MeSH
- Neoplasms immunology microbiology therapy MeSH
- Salmonella genetics metabolism MeSH
- Neoplasm Regression, Spontaneous MeSH
- Check Tag
- History, 17th Century MeSH
- History, 18th Century MeSH
- History, 19th Century MeSH
- History, Ancient MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Bacterial Toxins MeSH
- BCG Vaccine MeSH
This review deals with the role of microorganisms in spontaneous regression of a tumour. Spontaneous cancer regression is a phenomenon that has been described for many centuries. One of the most well known methods of inducing spontaneous regression of cancer is the application of Coley's toxin (heat-killed Streptococcus pyogenes and Serratia marcescens), which has been used for the successful treatment of sarcomas, carcinomas, lymphomas, myelomas and melanomas. In clinical practice, the use of Bacillus Calmette-Guérin vaccine for the treatment of superficial urinary bladder cancer is the most common instance of the application of microorganisms for the treatment of cancer. This review provides further information on other tested bacteria--Clostridium spp., Bifidobacterium spp., Lactobacillus spp. and Salmonella spp.--in this field of study. Among new age methods, bactofection, alternative gene therapy, combination bacteriolytic therapy and bacteria-directed enzyme prodrug therapy are some of the potential cancer treatment modalities that use microorganisms. We have also provided information about the interconnection among microorganisms, immune system response, and the possible mechanisms involved in the spontaneous regression of tumours.
See more in PubMed
Bunting A. Genetically engineered bacteria as cancer fighting agents. Univ Ottawa J Med 2013; 3:26–33.
Jessy T. Immunity over inability: the spontaneous regression of cancer. J Nat Sci Biol Med 2011; 2:43–49. PubMed PMC
Baird JR, Byrne KT, Lizotte PH, Toraya-Brown S, Scarlett UK, Alexander MP, et al. Immune-mediated regression of established B16F10 melanoma by intratumoral injection of attenuated Toxoplasma gondii protects against rechallenge. J Immunol 2013; 190:469–478. PubMed PMC
Abdulamir AS, Hafidh RR, Abu Bakar F. The tumoricidal activity of Salmonella and its role in treating cancers. Cancer Ther 2013; 8:10–23.
Sengupta N, MacFie TS, MacDonald TT, Pennington D, Silver AR. Cancer immunoediting and ‘‘spontaneous’’ tumor regression. Pathol Res Pract 2010; 206:1–8. PubMed
Thomas JA, Badini M. The role of innate immunity in spontaneous regression of cancer. Indian J Cancer 2011; 48:246–251. PubMed
Mager DL. Bacteria and cancer: cause, coincidence or cure? A review. J Transl Med 2006; 4:14. PubMed PMC
Hoption Cann SA, van Netten JP, van Netten C. Dr William Coley and tumour regression: a place in history or in the future. Postgrad Med J 2003; 79:672–680. PubMed PMC
Hoption Cann SA, van Netten JP, van Netten C. Acute infections as a means of cancer prevention: Opposing effects to chronic infections? Cancer Detect Prev 2006; 30:83–93. PubMed
Wei MQ, Mengesha A, Good D, Anné J. Bacterial targeted tumour therapy – dawn of a new era. Cancer Lett 2008; 259:16–27. PubMed
Paton AW, Morona R, Paton JC. Bioengineered microbes in disease therapy. Trends Mol Med 2012; 18:417–425. PubMed
Kok-Ho H. Spontaneous regression of cancer: a therapeutic role for pyrogenic infections? AMSJ 2012; 3:30–33.
Jain RK, Forbes NS. Can engineered bacteria help control cancer? Proc Natl Acad Sci USA 2001; 98:14748–14750. PubMed PMC
Chakrabarty AM. Microorganisms and cancer: quest for a therapy. J Bacteriol 2003; 185:2683–2686. PubMed PMC
Ramasamy S, Nattarayan V, Jayaraj GG, Arulanandh MD, Jaiswal A. Bacterial infection-mediated anticancer activity (BIMAc) – revisiting the molecular mechanisms. J Med Hypotheses Ideas 2012; 6:19–22.
Kim CJ, Dessureault S, Gabrilovich D, Reintgen DS, Slingluff CL., Jr Immunotherapy for melanoma. Cancer Control 2002; 9:22–30. PubMed
Karpiński TM, Szkaradkiewicz AK. Anticancer peptides from bacteria. Bangladesh J Pharmacol 2013; 8:343–348.
Chorobik P, Czaplicki D, Ossysek K, Bereta J. Salmonella and cancer: from pathogens to therapeutics. Acta Biochim Pol 2013; 60:285–297. PubMed
Paterson Y, Guirnalda PD, Wood LM. Listeria and Salmonella bacterial vectors of tumor-associated antigens for cancer immunotherapy. Semin Immunol 2010; 22:183–189. PubMed PMC
Mukaratirwa S, Chitanga S, Chimatira T, Makuleke C, Sayi ST, Bhebhe E. Combination therapy using intratumoral bacillus Calmette-Guerin (BCG) and vincristine in dogs with transmissible venereal tumours: therapeutic efficacy and histological changes. J S Afr Vet Assoc 2009; 80:92–96. PubMed
Taniguchi S, Fujimori M, Sasaki T, Tsutsui H, Shimatani Y, Seki K, et al. Targeting solid tumors with non-pathogenic obligate anaerobic bacteria. Cancer Sci 2010; 101:1925–1932. PubMed PMC
Li Z, Fallon J, Mandeli J, Wetmur J, Woo SL. A genetically enhanced anaerobic bacterium for oncopathic therapy of pancreatic cancer. J Natl Cancer Inst 2008; 100:1389–1400. PubMed PMC
Yamada T, Goto M, Punj V, Zaborina O, Chen ML, Kimbara K, et al. Bacterial redox protein azurin, tumor suppressor protein p53, and regression of cancer. Proc Natl Acad Sci USA 2002; 99:14098–14103. PubMed PMC
Patyar S, Joshi R, Byrav DS, Prakash A, Medhi B, Das BK. Bacteria in cancer therapy: a novel experimental strategy. J Biomed Sci 2010; 17:21. PubMed PMC
Mangesha A. Use of non-pathogenic bacteria as vectors for targeted gene expression in cancer gene therapy [dissertation]. the NetherlandsMaastricht University, 2009.
Sen PP, Gautham A, Manavalan M, Najeeb MA. Bacteria in cancer therapy: an emerging robust therapy. Int Res J Pharm 2013; 4:1–4.
Seow SW, Cai S, Rahmat JN, Bay BH, Lee YK, Chan YH, et al. Lactobacillus rhamnosus GG induces tumor regression in mice bearing orthotopic bladder tumors. Cancer Sci 2010; 101:751–758. PubMed PMC
Chang WW, Lee CH. Salmonella as an innovative therapeutic antitumor agent. Int J Mol Sci 2014; 15:14546–14554. PubMed PMC
Leschner S, Westphal K, Dietrich N, Viegas N, Jablonska J, Lyszkiewicz M, et al. Tumor invasion of Salmonella enterica serovar Typhimurium is accompanied by strong hemorrhage promoted by TNF-a. PLoS One 2009; 4:e6692. PubMed PMC
Zhao M, Yang M, Li XM, Jiang P, Baranov E, Li S, et al. Tumor targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci USA 2005; 102:755–760. PubMed PMC
Zhao M, Geller J, Ma H, Yang M, Penman S, Hoffman RM. Monotherapy with a tumor-targeting mutant of Salmonella typhimurium cures orthotopic metastatic mouse models of human prostate cancer. Proc Natl Acad Sci USA 2007; 104:10170–10174. PubMed PMC
Zhao M, Yang M, Ma H, Li X, Tan X, Li S, et al. Targeted therapy with a Salmonella typhimurium leucine arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res 2006; 66:7647–7652. PubMed
Zhang Y, Tome Y, Suetsugu A, Zhang L, Zhang N, Hoffman RM, et al. Determination of the optimal route of administration of Salmonella typhimurium A1 R to target breast cancer in nude mice. Anticancer Res 2012; 32:2501–2508. PubMed
Zhang Y, Miwa S, Zhang N, Hoffman RM, Zhao M. Tumor-targeting Salmonella typhimurium A1-R arrests growth of breast-cancer brain metastasis. Oncotarget 2015; 6:2615–2622. PubMed PMC
Uchugonova A, Zhao M, Zhang Y, Weinigel M, König K, Hoffman RM. Cancer-cell killing by engineered Salmonella imaged by multiphoton tomography in live mice. Anticancer Res 2012; 32:4331–4337. PubMed
Liu F, Zhang L, Hoffman RM, Zhao M. Vessel destruction by tumor targeting Salmonella typhimurium A1-R is enhanced by high tumor vascularity. Cell Cycle 2010; 9:4518–4524. PubMed PMC
Matsumoto Y, Miwa S, Zhang Y, Hiroshima Y, Yano S, Uehara F, et al. Efficacy of tumor-targeting Salmonella typhimurium A1 R on nude mouse models of metastatic and disseminated human ovarian cancer. J Cell Biochem 2014; 115:1996–2003. PubMed
Matsumoto Y, Miwa S, Zhang Y, Zhao M, Yano S, Uehara F, et al. Intraperitoneal administration of tumor-targeting Salmonella typhimurium A1-R inhibits disseminated human ovarian cancer and extends survival in nude mice. Oncotarget 2015; 6:11369–11377. PubMed PMC
Hiroshima Y, Zhang Y, Zhang N, Maawy A, Mii S, Yamamoto M, et al. Establishment of a patient-derived orthotopic xenograft (PDOX) model of HER-2-positive cervical cancer expressing the clinical metastatic pattern. PLoS One 2015; 10:e0117417. PubMed PMC
Nagakura C, Hayashi K, Zhao M, Yamauchi K, Yamamoto N, Tsuchiya H, et al. Efficacy of a genetically-modified Salmonella typhimurium in an orthotopic human pancreatic cancer in nude mice. Anticancer Res 2009; 29:1873–1878. PubMed
Yam C, Zhao M, Hayashi K, Ma H, Kishimoto H, McElroy M, et al. Monotherapy with a tumor-targeting mutant of S. typhimurium inhibits liver metastasis in a mouse model of pancreatic cancer. J Surg Res 2010; 164:248–255. PubMed PMC
Hiroshima Y, Zhao M, Zhang Y, Maawy A, Hassanein MK, Uehara F, et al. Comparison of efficacy of Salmonella typhimurium A1-R and chemotherapy on stem-like and non-stem human pancreatic cancer cells. Cell Cycle 2013; 12:2774–2780. PubMed PMC
Binder DC, Engels B, Arina A, Yu P, Slauch JM, Fu YX, et al. Antigen-specific bacterial vaccine combined with anti-PD-L1 rescues dysfunctional endogenous T cells to reject long-established cancer. Cancer Immunol Res 2013; 1:123–133. PubMed PMC
Hiroshima Y, Zhao M, Maawy A, Zhang Y, Katz MH, Fleming JB, et al. Efficacy of Salmonella typhimurium A1-R versus chemotherapy on a pancreatic cancer patient-derived orthotopic xenografts (PDOX). J Cell Biochem 2014; 115:1254–1261. PubMed
Hiroshima Y, Zhang Y, Murakami T, Maawy A, Miwa S, Yamamoto M, et al. Efficacy of tumor-targeting Salmonella typhimurium A1-R in combination with anti-angiogenesis therapy on a pancreatic cancer patient-derived orthotopic xenografts (PDOX) and cell-line mouse models. Oncotarget 2014; 5:12346–12357. PubMed PMC
Hayashi K, Zhao M, Yamauchi K, Yamamoto N, Tsuchiya H, Tomita K, et al. Systemic targeting of primary bone tumor and lung metastasis of high-grade osteosarcoma in nude mice with a tumor-selective strain of Salmonella typhimurium. Cell Cycle 2009; 8:870–875. PubMed
Hayashi K, Zhao M, Yamauchi K, Yamamoto N, Tsuchiya H, Tomita K, et al. Cancer metastasis directly eradicated by targeted therapy with a modified Salmonella typhimurium. J Cell Biochem 2009; 106:992–998. PubMed PMC
Miwa S, Zhang Y, Baek KE, Uehara F, Yano S, Yamamoto M, et al. Inhibition of spontaneous and experimental lung metastasis of soft-tissue sarcoma by tumor-targeting Salmonella typhimurium A1-R. Oncotarget 2014; 5:12849–12861. PubMed PMC
Hiroshima Y, Zhao M, Zhang Y, Zhang N, Maawy A, Murakami T, et al. Tumor-targeting Salmonella typhimurium A1-R arrests a chemo-resistant patient soft-tissue sarcoma in nude mice. PLoS One 2015; 10:e0134324. PubMed PMC
Kimura H, Zhang L, Zhao M, Hayashi K, Tsuchiya H, Tomita K, et al. Targeted therapy of spinal cord glioma with a genetically modified Salmonella typhimurium. Cell Prolif 2010; 43:41–48. PubMed PMC
Momiyama M, Zhao M, Kimura H, Tran B, Chishima T, Bouvet M, et al. Inhibition and eradication of human glioma with tumor-targeting Salmonella typhimurium in an orthotopic nude-mouse model. Cell Cycle 2012; 11:628–632. PubMed PMC
Lehouritis P, Springer C, Tangney M. Bacterial-directed enzyme prodrug therapy. J Control Release 2013; 170:120–131. PubMed
Bizzarri AR, Santini S, Coppari E, Bucciantini M, Di Agostino S, Yamada T, et al. Interaction of an anticancer peptide fragment of azurin with p53 and its isolated domains studied by atomic force spectroscopy. Int J Nanomed 2011; 6:3011–3019. PubMed PMC
Wolf P, Elsasser-Beile U. Pseudomonas exotoxin A: from virulence factor to anti-cancer agent. Int J Med Microbiol 2009; 299:161–176. PubMed
Zhang Y, Schulte W, Pink D, Phipps K, Zijlstra A, Lewis JD, et al. Sensitivity of cancer cells to truncated diphtheria toxin. PLoS One 2010; 5:e10498. PubMed PMC
Lee DG, Hahm KS, Park Y, Kim HY, Lee W, Lim SC, et al. Functional and structural characteristics of anticancer peptide Pep27 analogues. Cancer Cell Int 2005; 5:21. PubMed PMC
Hoption Cann SA, van Netten JP, van Netten C, Glover DW. Spontaneous regression: a hidden treasure buried in time. Med Hypotheses 2002; 58:115–119. PubMed
Hobohm U. Fever and cancer in perspective. Cancer Immunol Immunother 2001; 50:391–396. PubMed PMC
Oikonomopoulou K, Brinc D, Kyriacou K, Diamandis EP. Infection and cancer: revaluation of the hygiene hypothesis. Clin Cancer Res 2013; 9:2834–2841. PubMed