p38 MAPK Is Activated but Does Not Play a Key Role during Apoptosis Induction by Saturated Fatty Acid in Human Pancreatic β-Cells

. 2016 Feb 05 ; 17 (2) : 159. [epub] 20160205

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26861294

Grantová podpora
Howard Hughes Medical Institute - United States

Saturated stearic acid (SA) induces apoptosis in the human pancreatic β-cells NES2Y. However, the molecular mechanisms involved are unclear. We showed that apoptosis-inducing concentrations of SA activate the p38 MAPK signaling pathway in these cells. Therefore, we tested the role of p38 MAPK signaling pathway activation in apoptosis induction by SA in NES2Y cells. Crosstalk between p38 MAPK pathway activation and accompanying ERK pathway inhibition after SA application was also tested. The inhibition of p38 MAPK expression by siRNA silencing resulted in a decrease in MAPKAPK-2 activation after SA application, but it had no significant effect on cell viability or the level of phosphorylated ERK pathway members. The inhibition of p38 MAPK activity by the specific inhibitor SB202190 resulted in inhibition of MAPKAPK-2 activation and noticeable activation of ERK pathway members after SA treatment but in no significant effect on cell viability. p38 MAPK overexpression by plasmid transfection produced an increase in MAPKAPK-2 activation after SA exposure but no significant influence on cell viability or ERK pathway activation. The activation of p38 MAPK by the specific activator anisomycin resulted in significant activation of MAPKAPK-2. Concerning the effect on cell viability, application of the activator led to apoptosis induction similar to application of SA (PARP cleavage and caspase-7, -8, and -9 activation) and in inhibition of ERK pathway members. We demonstrated that apoptosis-inducing concentrations of SA activate the p38 MAPK signaling pathway and that this activation could be involved in apoptosis induction by SA in the human pancreatic β-cells NES2Y. However, this involvement does not seem to play a key role. Crosstalk between p38 MAPK pathway activation and ERK pathway inhibition in NES2Y cells seems likely. Thus, the ERK pathway inhibition by p38 MAPK activation does not also seem to be essential for SA-induced apoptosis.

Zobrazit více v PubMed

Lupi R., Dotta F., Marselli L., del Guerra S., Masini M., Santangelo C., Patane G., Boggi U., Piro S., Anello M., et al. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: Evidence that β-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes. 2002;51:1437–1442. doi: 10.2337/diabetes.51.5.1437. PubMed DOI

Maedler K., Oberholzer J., Bucher P., Spinas G.A., Donath M.Y. Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic β-cell turnover and function. Diabetes. 2003;52:726–733. doi: 10.2337/diabetes.52.3.726. PubMed DOI

Azevedo-Martins A.K., Monteiro A.P., Lima C.L., Lenzen S., Curi R. Fatty acid-induced toxicity and neutral lipid accumulation in insulin-producing RINm5F cells. Toxicol. Vitro. 2006;20:1106–1113. doi: 10.1016/j.tiv.2006.02.007. PubMed DOI

Welters H.J., Diakogiannaki E., Mordue J.M., Tadayyon M., Smith S.A., Morgan N.G. Differential protective effects of palmitoleic acid and cAMP on caspase activation and cell viability in pancreatic β-cells exposed to palmitate. Apoptosis. 2006;11:1231–1238. doi: 10.1007/s10495-006-7450-7. PubMed DOI

Fürstova V., Kopska T., James R.F., Kovar J. Comparison of the effect of individual saturated and unsaturated fatty acids on cell growth and death induction in the human pancreatic β-cell line NES2Y. Life Sci. 2008;82:684–691. doi: 10.1016/j.lfs.2007.12.023. PubMed DOI

Welters H.J., Tadayyon M., Scarpello J.H., Smith S.A., Morgan N.G. Mono-unsaturated fatty acids protect against β-cell apoptosis induced by saturated fatty acids, serum withdrawal or cytokine exposure. FEBS Lett. 2004;560:103–108. doi: 10.1016/S0014-5793(04)00079-1. PubMed DOI

Diakogiannaki E., Welters H.J., Morgan N.G. Differential regulation of the endoplasmic reticulum stress response in pancreatic β-cells exposed to long-chain saturated and monounsaturated fatty acids. J. Endocrinol. 2008;197:553–563. doi: 10.1677/JOE-08-0041. PubMed DOI

Nemcova-Fürstova V., James R.F.L., Kovar J. Inhibitory effect of unsaturated fatty acids on saturated fatty acids-induced apoptosis in human pancreatic β-cells: Activation of caspases and ER stress induction. Cell. Physiol. Biochem. 2011;27:525–538. doi: 10.1159/000329954. PubMed DOI

Biden T.J., Boslem E., Chu K.Y., Sue N. Lipotoxic endoplasmic reticulum stress, β cell failure, and type 2 diabetes mellitus. Trends Endocrinol. Metab. 2014;25:389–398. doi: 10.1016/j.tem.2014.02.003. PubMed DOI

Cvjeticanin T., Stojanovic I., Timotijevic G., Stosic-Grujicic S., Miljkovic D. T cells cooperate with palmitic acid in induction of β cell apoptosis. BMC Immunol. 2009;29:1–10. doi: 10.1186/1471-2172-10-29. PubMed DOI PMC

Li X.L., Xu G., Chen T., Wong Y.S., Zhao H.L., Fan R.R., Gu X.M., Tong P.C., Chan J.C. Phycocyanin protects INS-1E pancreatic β cells against human islet amyloid polypeptide-induced apoptosis through attenuating oxidative stress and modulating JNK and p38 mitogen-activated protein kinase pathways. Int. J. Biochem. Cell Biol. 2009;41:1526–1535. doi: 10.1016/j.biocel.2009.01.002. PubMed DOI

Zarubin T., Han J. Activation and signaling of the p38 MAP kinase pathway. Cell Res. 2005;15:11–18. doi: 10.1038/sj.cr.7290257. PubMed DOI

Ben-Levy R., Hooper S., Wilson R., Paterson H.F., Marshall C.J. Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2. Curr. Biol. 1998;8:1049–1057. doi: 10.1016/S0960-9822(98)70442-7. PubMed DOI

Sakai N., Wada T., Furuichi K., Iwata Y., Yoshimoto K., Kitagawa K., Kokubo S., Kobayashi M., Takeda S., Kida H., et al. p38 MAPK phosphoryloation and NF-κB activation in human crescentic glomerulonephris. Nephrol. Dial. Transplant. 2002;17:998–1004. doi: 10.1093/ndt/17.6.998. PubMed DOI

Zhuang S., Demirs J.T., Kochevar I.E. p38 mitogen-activated protein kinase mediates bid cleavage, mitochondrial dysfunction, and caspase-3 activation during apoptosis induced by singlet oxygen but not by hydrogen peroxide. J. Biol. Chem. 2000;275:25939–25948. doi: 10.1074/jbc.M001185200. PubMed DOI

Berra E., Diaz-Meco M.T., Moscat J. The activation of p38 and apoptosis by the inhibition of ERK is antagonized by the phosphoinositide 3-kinase/Akt pathway. J. Biol. Chem. 1998;273:10792–10797. doi: 10.1074/jbc.273.17.10792. PubMed DOI

Cai B., Chang S.H., Becker E.B., Bonni A., Xia Z. p38 MAP kinase mediates apoptosis through phosphorylation of BimEL at Ser-65. J. Biol. Chem. 2006;281:25215–25222. doi: 10.1074/jbc.M512627200. PubMed DOI

Yuan H., Zhang X., Huang X., Lu Y., Tang W., Man Y., Wang S., Xi J., Li J. NADPH Oxidase 2-derived reactive oxygen species mediate FFAS-induced dysfunction and apoptosis of β-cells via JNK, p38 MAPK and p53 pathways. PLoS ONE. 2010;5:159. doi: 10.1371/journal.pone.0015726. PubMed DOI PMC

Zhang Y., Xu M., Zhang S., Yan L., Yang C., Lu W., Li Y., Cheng H. The role of G protein-coupled receptor 40 in lipoapoptosis in mouse β-cell line NIT-1. Mol. Cell. Endocrinol. 2007;38:651–661. doi: 10.1677/JME-06-0048. PubMed DOI

Lee J., Hong F., Kwon S., Kim S.S., Kim D.O., Kang H.S., Lee S.J., Ha J., Kim S.S. Activation of p38MAPK induces cell cycle arrest via inhibition of c-Raf/ERK pathway during muscle differentiation. Biochem. Biophys. Res. Commun. 2002;298:765–771. doi: 10.1016/S0006-291X(02)02562-7. PubMed DOI

Chang F., Steelman L.S., Lee J.T., Shelton J.G., Navolanic P.M., Blalock W.L., Franklin R.A., McCubrey J.A. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: Potential targeting for therapeutic intervention. Leukemia. 2003;17:1263–1293. doi: 10.1038/sj.leu.2402945. PubMed DOI

Lu Z., Xu S. ERK1/2 MAP kinases in cell survival and apoptosis. Life. 2006;58:621–631. doi: 10.1080/15216540600957438. PubMed DOI

Huang D., Khoe M., Befekadu M., Chung S., Takata Y., Ilic D., Bryer-Ash M. Focal adhesion kinase mediates cell survival via NF-κB and ERK signaling pathways. Am. J. Physiol. Cell Physiol. 2007;292:C1339–C1352. doi: 10.1152/ajpcell.00144.2006. PubMed DOI

Li D.W., Liu J.P., Mao Y.W., Xiang H., Wang J., Ma W.Y., Dong Z., Pike H.M., Brown R.E., Reed J.C. Calcium-activated RAF/MEK/ERK signaling pathway mediates p53-dependent apoptosis and is abrogated by alpha B-crystallin through inhibition of RAS activation. Mol. Biol. Cell. 2005;16:4437–4453. doi: 10.1091/mbc.E05-01-0010. PubMed DOI PMC

Zhuang S., Yan Y., Daubert R.A., Han J., Schnellmann R.G. ERK promotes hydrogen peroxide-induced apoptosis through caspase-3 activation and inhibition of Akt in renal epithelial cells. Am. J. Physiol. Ren. Physiol. 2007;292:F440–F447. doi: 10.1152/ajprenal.00170.2006. PubMed DOI

Heo J.I., Oh S.J., Kho Y.J., Kim J.H., Kang H.J., Park S.H., Kim H.S., Shin J.Y., Kim M.J., Kim S.C., et al. ERK mediates anti-apoptotic effect through phosphorylation and cytoplasmic localization of p21Waf1/Cip1/Sdi in response to DNA damage in normal human embryonic fibroblast (HEF) cells. Mol. Biol. Rep. 2011;38:2785–2791. doi: 10.1007/s11033-010-0423-5. PubMed DOI

Simon M.N., Azevedo-Martins A.K., Amanso A.M., Carvalho C.R.O. ; Curim R. Persistent activation of Akt or ERK prevents the toxicity induced by saturated and polyunsaturated fatty acids in RINm5F β-cells. Toxicol. Vitro. 2008;22:1018–1024. doi: 10.1016/j.tiv.2008.02.012. PubMed DOI

Plaisance V., Perret V., Favrea D., Abderrahmania A., Yanga J.-Y., Widmanna C., Regazzi R. Role of the transcriptional factor C/EBP in free fatty acid-elicited β cell failure. Mol. Cell. Endocrinol. 2009;305:47–55. doi: 10.1016/j.mce.2008.12.005. PubMed DOI

Nemcova-Fürstova V., Balusikova K., Sramek J., James R.F., Kovar J. Caspase-2 and JNK Activated by saturated fatty acids are not involved in apoptosis induction but modulate ER stress in human pancreatic β-cells. Cell. Physiol. Biochem. 2013;31:277–289. doi: 10.1159/000343367. PubMed DOI

Eitel K., Staiger H., Rieger J., Mischak H., Brandhorst H., Brendel M.D., Bretzel R.G., Häring H.U., Kellerer M. Protein kinase C Δ activation and translocation to the nucleus are required for fatty acid-induced apoptosis of insulin-secreting cells. Diabetes. 2003;52:991–997. doi: 10.2337/diabetes.52.4.991. PubMed DOI

Eitel K., Staiger H., Brendel M.D., Brandhorst D., Bretzel R.G., Haring H.U., Kellerer M. Different role of saturated and unsaturated fatty acids in β-cell apoptosis. Biochem. Biophys. Res. Commun. 2002;299:853–856. doi: 10.1016/S0006-291X(02)02752-3. PubMed DOI

Cunha D.A., Hekerman P., Ladriere L., Bazarra-Castro A., Ortis F., Wakeham M.C., Moore F., Rasschaert J., Cardozo A.K., Bellomo E., et al. Initiation and execution of lipotoxic ER stress in pancreatic β-cells. J. Cell Sci. 2008;121:2308–2318. doi: 10.1242/jcs.026062. PubMed DOI PMC

Lai E., Bikopoulos G., Wheeler M.B., Rozakis-Adcock M., Volchuk A. Differential activation of ER stress and apoptosis in response to chronically elevated free fatty acids in pancreatic β-cells. Am. J. Physiol. Endocrinol. Metab. 2008;294:E540–E550. doi: 10.1152/ajpendo.00478.2007. PubMed DOI

Ladriere L., Igoillo-Esteve M., Cunha D.A., Brion J.P., Bugliani M., Marchetti P., Eizirik D.L., Cnop M. Enhanced signaling downstream of ribonucleic Acid-activated protein kinase-like endoplasmic reticulum kinase potentiates lipotoxic endoplasmic reticulum stress in human islets. J. Clin. Endocrinol. Metab. 2010;95:1442–1449. doi: 10.1210/jc.2009-2322. PubMed DOI

Vacaresse N., Lajoie-Mazenc I., Auge N., Suc I., Frisach M.-F., Salvayre R., Nègre-Salvayre A. Activation of epithelial growth factor receptor pathway by unsaturated fatty acids. Circ. Res. 1995;85:892–899. doi: 10.1161/01.RES.85.10.892. PubMed DOI

Holzer R.G., Park E.J., Li N., Tran H., Chen M., Choi C., Solinas G., Karin M. Saturated fatty acids induce c-Src clustering within membrane subdomains, leading to JNK activation. Cell. 2011;147:173–184. doi: 10.1016/j.cell.2011.08.034. PubMed DOI PMC

Guo J., Qian Y.Y., Xi X.X., Hu X.H., Zhu J.X., Han X. Blockage of ceramide metabolism exacerbates palmitate inhibition of pro-insulin gene expression in pancreatic β-cells. Mol. Cell. Biochem. 2010;338:283–290. doi: 10.1007/s11010-009-0362-4. PubMed DOI

Watson M.L., Macrae K., Marley A.E., Hundal H.S. Chronic effects of palmitate overload on nutrient-induced insulin secretion and autocrine signalling in pancreatic MIN6 β cells. PLoS ONE. 2011;6:159. doi: 10.1371/journal.pone.0025975. PubMed DOI PMC

Natalicchio A., Labarbuta R., Tortosa F., Biondi G., Marrano N., Peschechera A., Carchia E., Orlando M.R., Leonardini A., Cignarelli A., et al. Exendin-4 protects pancreatic β cells from palmitate-induced apoptosis by interfering with GPR40 and the MKK4/7 stress kinase signalling pathway. Diabetologia. 2013;56:2456–2466. doi: 10.1007/s00125-013-3028-4. PubMed DOI

Choi S.E., Kim H.E., Shin H.C., Jang H.J., Lee K.W., Kim Y., Kang S.S., Chun J., Kang Y. Involvement of Ca2+-mediated apoptotic signals in palmitate-induced MIN6N8a β cell death. Mol. Cell. Endocrinol. 2007;272:50–62. doi: 10.1016/j.mce.2007.04.004. PubMed DOI

Johnson J.D., Han Z., Otani K., Ye H., Zhang Y., Wu H., Horikawa Y., Misler S., Bell G.I., Polonsky K.S. RyR2 and calpain-10 delineate a novel apoptosis pathway in pancreatic islets. J. Biol. Chem. 2004;279:24794–24802. doi: 10.1074/jbc.M401216200. PubMed DOI

Maedler K., Spinas G.A., Dyntar D., Moritz W., Kaiser N., Donath M.Y. Distinct effects of saturated and monounsaturated fatty acids on β-cell turnover and function. Diabetes. 2001;50:69–76. doi: 10.2337/diabetes.50.1.69. PubMed DOI

Maestre I., Jordan J., Calvo S., Reig J.A., Cena V., Soria B., Prentki M., Roche E. Mitochondrial dysfunction is involved in apoptosis induced by serum withdrawal and fatty acids in the β-cell line INS-1. Endocrinology. 2003;144:335–345. doi: 10.1210/en.2001-211282. PubMed DOI

Marchetti P., del G.S., Marselli L., Lupi R., Masini M., Pollera M., Bugliani M., Boggi U., Vistoli F., Mosca F., et al. Pancreatic islets from type 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin. J. Clin. Endocrinol. Metab. 2004;89:5535–5541. doi: 10.1210/jc.2004-0150. PubMed DOI

Liadis N., Salmena L., Kwan E., Tajmir P., Schroer S.A., Radziszewska A., Li X., Sheu L., Eweida M., Xu S., et al. Distinct in vivo roles of caspase-8 in β-cells in physiological and diabetes models. Diabetes. 2007;56:2302–2311. doi: 10.2337/db06-1771. PubMed DOI

Shimabukuro M., Zhou Y.T., Levi M., Unger R.H. Fatty acid-induced β cell apoptosis: A link between obesity and diabetes. Proc. Natl. Acad. Sci. USA. 1998;95:2498–2502. doi: 10.1073/pnas.95.5.2498. PubMed DOI PMC

Okuyama R., Fujiwara T., Ohsumi J. High glucose potentiates palmitate-induced NO-mediated cytotoxicity through generation of superoxide in clonal β-cell HIT-T15. FEBS Lett. 2003;545:219–223. doi: 10.1016/S0014-5793(03)00534-9. PubMed DOI

Jeffrey K.D., Alejandro E.U., Luciani D.S., Kalynyak T.B., Hu X., Li H., Lin Y., Townsend R.R., Polonsky K.S., Johnson J.D. Carboxypeptidase E mediates palmitate-induced β-cell ER stress and apoptosis. Proc. Natl. Acad. Sci. USA. 2008;105:8452–8457. doi: 10.1073/pnas.0711232105. PubMed DOI PMC

Kharroubi I., Ladriere L., Cardozo A.K., Dogusan Z., Cnop M., Eizirik D.L. Free fatty acids and cytokines induce pancreatic β-cell apoptosis by different mechanisms: Role of nuclear factor-κB and endoplasmic reticulum stress. Endocrinology. 2004;145:5087–5096. doi: 10.1210/en.2004-0478. PubMed DOI

Rakatzi I., Mueller H., Ritzeler O., Tennagels N., Eckel J. Adiponectin counteracts cytokine- and fatty acid-induced apoptosis in the pancreatic β-cell line INS-1. Diabetologia. 2004;47:249–258. doi: 10.1007/s00125-003-1293-3. PubMed DOI

Busch A.K., Gurisik E., Cordery D.V., Sudlow M., Denyer G.S., Laybutt D.R., Hughes W.E., Biden T.J. Increased fatty acid desaturation and enhanced expression of stearoyl coenzyme A desaturase protects pancreatic β-cells from lipoapoptosis. Diabetes. 2005;54:2917–2924. doi: 10.2337/diabetes.54.10.2917. PubMed DOI

Cnop M., Ladrière L., Igoillo-Esteve M., Moura R.F., Cunha D.A. Causes and cures for endoplasmic reticulum stress in lipotoxic β-cell dysfunction. Diabetes Obes. Metab. 2010;12:S76–S82. doi: 10.1111/j.1463-1326.2010.01279.x. PubMed DOI

Fonseca S.G., Gromada J., Urano F. Endoplasmic reticulum stress and pancreatic β-cell death. Trends Endocrinol. Metab. 2011;22:266–274. doi: 10.1016/j.tem.2011.02.008. PubMed DOI PMC

Hirosawa M., Nakahara M., Otosaka R., Imoto A., Okazaki T., Takahashi S. The p38 pathway inhibitor SB202190 activates MEK/MAPK to stimulate the growth of leukemia cells. Leuk. Res. 2009;33:693–699. doi: 10.1016/j.leukres.2008.09.028. PubMed DOI

Macfarlane W.M., Cragg H., Docherty H.M., Read M.L., James R.F., Aynsley-Green A., Docherty K. Impaired expression of transcription factor IUF1 in a pancreatic β-cell line derived from a patient with persistent hyperinsulinaemic hypoglycaemia of infancy (nesidioblastosis) FEBS Lett. 1997;413:304–308. doi: 10.1016/S0014-5793(97)00874-0. PubMed DOI

Musilkova J., Kovar J. Additive stimulatory effect of extracellular calcium and potassium on non-transferrin ferric iron uptake by HeLa and K562 cells. Biochim. Biophys. Acta. 2001;1514:117–126. doi: 10.1016/S0005-2736(01)00367-4. PubMed DOI

Kovar J., Franek F. Growth-stimulating effect of transferrin on a hybridoma cell line: Relation to transferrin iron-transporting function. Exp. Cell Res. 1989;182:358–369. doi: 10.1016/0014-4827(89)90241-3. PubMed DOI

Cnop M., Hannaert J.C., Hoorens A., Eizirik D.L., Pipeleers D.G. Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes. 2001;50:1771–1777. doi: 10.2337/diabetes.50.8.1771. PubMed DOI

Najít záznam

Citační ukazatele

Možnosti archivace