Kinase Signaling in Apoptosis Induced by Saturated Fatty Acids in Pancreatic β-Cells

. 2016 Sep 12 ; 17 (9) : . [epub] 20160912

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid27626409

Pancreatic β-cell failure and death is considered to be one of the main factors responsible for type 2 diabetes. It is caused by, in addition to hyperglycemia, chronic exposure to increased concentrations of fatty acids, mainly saturated fatty acids. Molecular mechanisms of apoptosis induction by saturated fatty acids in β-cells are not completely clear. It has been proposed that kinase signaling could be involved, particularly, c-Jun N-terminal kinase (JNK), protein kinase C (PKC), p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK), and Akt kinases and their pathways. In this review, we discuss these kinases and their signaling pathways with respect to their possible role in apoptosis induction by saturated fatty acids in pancreatic β-cells.

Zobrazit více v PubMed

Lupi R., Dotta F., Marselli L., del Guerra S., Masini M., Santangelo C., Patane G., Boggi U., Piro S., Anello M., et al. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: Evidence that β-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes. 2002;51:1437–1442. doi: 10.2337/diabetes.51.5.1437. PubMed DOI

Maedler K., Oberholzer J., Bucher P., Spinas G.A., Donath M.Y. Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic β-cell turnover and function. Diabetes. 2003;52:726–733. doi: 10.2337/diabetes.52.3.726. PubMed DOI

Azevedo-Martins A.K., Monteiro A.P., Lima C.L., Lenzen S., Curi R. Fatty acid-induced toxicity and neutral lipid accumulation in insulin-producing RINm5F cells. Toxicol. In Vitro. 2006;20:1106–1113. doi: 10.1016/j.tiv.2006.02.007. PubMed DOI

Welters H.J., Diakogiannaki E., Mordue J.M., Tadayyon M., Smith S.A., Morgan N.G. Differential protective effects of palmitoleic acid and cAMP on caspase activation and cell viability in pancreatic β-cells exposed to palmitate. Apoptosis. 2006;11:1231–1238. doi: 10.1007/s10495-006-7450-7. PubMed DOI

Fürstova V., Kopska T., James R.F., Kovar J. Comparison of the effect of individual saturated and unsaturated fatty acids on cell growth and death induction in the human pancreatic β-cell line NES2Y. Life Sci. 2008;82:684–691. doi: 10.1016/j.lfs.2007.12.023. PubMed DOI

Maedler K., Spinas G.A., Dyntar D., Moritz W., Kaiser N., Donath M.Y. Distinct effects of saturated and monounsaturated fatty acids on β-cell turnover and function. Diabetes. 2001;50:69–76. doi: 10.2337/diabetes.50.1.69. PubMed DOI

El-Assaad W., Buteau J., Peyot M.L., Nolan C., Roduit R., Hardy S., Joly E., Dbaibo G., Rosenberg L., Prentki M. Saturated fatty acids synergize with elevated glucose to cause pancreatic β-cell death. Endocrinology. 2003;144:4154–4163. PubMed

Kharroubi I., Ladriere L., Cardozo A.K., Dogusan Z., Cnop M., Eizirik D.L. Free fatty acids and cytokines induce pancreatic β-cell apoptosis by different mechanisms: role of nuclear factor-κB and endoplasmic reticulum stress. Endocrinology. 2004;145:5087–5096. doi: 10.1210/en.2004-0478. PubMed DOI

Welters H.J., Tadayyon M., Scarpello J.H., Smith S.A., Morgan N.G. Mono-unsaturated fatty acids protect against β-cell apoptosis induced by saturated fatty acids, serum withdrawal or cytokine exposure. FEBS Lett. 2004;560:103–108. doi: 10.1016/S0014-5793(04)00079-1. PubMed DOI

Higa M., Shimabukuro M., Shimajiri Y., Takasu N., Shinjyo T., Inaba T. Protein kinase B/Akt signaling is required for palmitate-induced β-cell lipotoxicity. Diabetes Obes. Metab. 2006;8:228–233. doi: 10.1111/j.1463-1326.2005.00488.x. PubMed DOI

Karaskov E., Scott C., Zhang L., Teodoro T., Ravazzola M., Volchuk A. Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic β-cell apoptosis. Endocrinology. 2006;147:3398–3407. doi: 10.1210/en.2005-1494. PubMed DOI

Hennige A.M., Ranta F., Heinzelmann I., Dufer M., Michael D., Braumuller H., Lutz S.Z., Lammers R., Drews G., Bosch F., et al. Overexpression of kinase-negative protein kinase Cδ in pancreatic β-cells protects mice from diet-induced glucose intolerance and β-cell dysfunction. Diabetes. 2010;59:119–127. doi: 10.2337/db09-0512. PubMed DOI PMC

Eitel K., Staiger H., Brendel M.D., Brandhorst D., Bretzel R.G., Haring H.U., Kellerer M. Different role of saturated and unsaturated fatty acids in β-cell apoptosis. Biochem. Biophys. Res. Commun. 2002;299:853–856. doi: 10.1016/S0006-291X(02)02752-3. PubMed DOI

Sone H., Kagawa Y. Pancreatic β cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice. Diabetologia. 2005;48:58–67. doi: 10.1007/s00125-004-1605-2. PubMed DOI

Diakogiannaki E., Welters H.J., Morgan N.G. Differential regulation of the endoplasmic reticulum stress response in pancreatic β-cells exposed to long-chain saturated and monounsaturated fatty acids. J. Endocrinol. 2008;197:553–563. doi: 10.1677/JOE-08-0041. PubMed DOI

Nemcova-Fürstova V., James R.F.L., Kovar J. Inhibitory effect of unsaturated fatty acids on saturated fatty acids-induced apoptosis in human pancreatic β-cells: Activation of caspases and ER stress induction. Cell. Physiol. Biochem. 2011;27:525–538. doi: 10.1159/000329954. PubMed DOI

Martinez S.C., Tanabe K., Cras-Méneur C., Abumrad N.A., Bernal-Mizrachi E., Permutt M.A. Inhibition of FoxO1 protects pancreatic islet β-cells against fatty acid and endoplasmic reticulum stress-induced apoptosis. Diabetes. 2008;57:846–859. doi: 10.2337/db07-0595. PubMed DOI

Qi D., Cai K., Wang O., Li Z., Chen J., Deng B., Qian L., Le Y. Fatty acids induce amylin expression and secretion by pancreatic β-cells. Am. J. Physiol. Endocrinol. Metab. 2010;298:E99–E107. doi: 10.1152/ajpendo.00242.2009. PubMed DOI

Yuan H., Zhang X., Huang X., Lu Y., Tang W., Man Y., Wang S., Xi J., Li J. NADPH Oxidase 2-Derived Reactive Oxygen Species Mediate FFAs-Induced Dysfunction and Apoptosis of β-Cells via JNK, p38 MAPK and p53 Pathways. PLoS ONE. 2010;5:1400. doi: 10.1371/journal.pone.0015726. PubMed DOI PMC

Biden T.J., Boslem E., Chu K.Y., Sue N. Lipotoxic endoplasmic reticulum stress, β cell failure, and type 2 diabetes mellitus. Trends Endocrinol. Metab. 2014;25:389–398. doi: 10.1016/j.tem.2014.02.003. PubMed DOI

Cvjeticanin T., Stojanovic I., Timotijevic G., Stosic-Grujicic S., Miljkovic D. T cells cooperate with palmitic acid in induction of β cell apoptosis. BMC Immunol. 2009;29:1–10. doi: 10.1186/1471-2172-10-29. PubMed DOI PMC

Lee J.H., Jung I.R., Choi S.E., Lee S.M., Lee S.J., Han S.J., Kim H.J., Kim D.J., Lee K.W., Kang Y. Toxicity generated through inhibition of pyruvate carboxylase and carnitine palmitoyl transferase-1 is similar to high glucose/palmitate-induced glucolipotoxicity in INS-1 β cells. Mol. Cell. Endocrinol. 2014;383:48–59. doi: 10.1016/j.mce.2013.12.002. PubMed DOI

Qin J., Fang N., Lou J., Zhang W., Xu S., Liu H., Fang Q., Wang Z., Liu J., Men X., et al. TRB3 Is Involved in Free Fatty Acid-Induced INS-1-Derived Cell Apoptosis via the Protein Kinase C δ Pathway. PLoS ONE. 2014;9:1400. doi: 10.1371/journal.pone.0096089. PubMed DOI PMC

Sano R., Reed J.C. ER stress-induced cell death mechanisms. Biochim. Biophys. Acta. 2013;1833:3460–3470. doi: 10.1016/j.bbamcr.2013.06.028. PubMed DOI PMC

Roux P.P., Blenis J. ERK and p38 MAPK-activated protein kinases: A family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 2004;68:320–344. doi: 10.1128/MMBR.68.2.320-344.2004. PubMed DOI PMC

Zhang Y., Xu M., Zhang S., Yan L., Yang C., Lu W., Li Y., Cheng H. The role of G protein-coupled receptor 40 in lipoapoptosis in mouse β-cell line NIT-1. Mol. Cell. Endocrinol. 2007;38:651–661. doi: 10.1677/JME-06-0048. PubMed DOI

Quan X., Zhang L., Li Y., Liang C. TCF2 attenuates FFA-induced damage in islet β-cells by regulating production of insulin and ROS. Int. J. Mol. Sci. 2014;15:13317–13332. doi: 10.3390/ijms150813317. PubMed DOI PMC

Wrede C.E., Dickson L.M., Lingohr M.K., Briaud I., Rhodes C.J. Fatty acid and phorbol ester-mediated interference of mitogenic signaling via novel protein kinase C isoforms in pancreatic β-cells (INS-1) J. Mol. Endocrinol. 2003;30:271–286. doi: 10.1677/jme.0.0300271. PubMed DOI

Kyriakis J.M., Avruch J. pp54 Microtubule-associated protein 2 kinase: A novel serine/threonine protein kinase regulated by phosphorylation and stimulated by poly-L-lysine. J. Biol. Chem. 1990;265:17355–17363. PubMed

Kyriakis J.M., Brautigan D.L., Ingebritsen T.S., Avruch J. pp54 microtubuleassociated protein-2 kinase requires both tyrosine and threonine phosphorylation for activity. J. Biol. Chem. 1991;266:10043–10046. PubMed

Derijard B., Hibi M., Wu I.-H., Barrett T., Su B., Deng T., Karin M., Davis R.J. JNK1: A protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell. 1994;76:1025–1037. doi: 10.1016/0092-8674(94)90380-8. PubMed DOI

Kyriakis J.M., Banerjee P., Nikolakaki E., Dai T., Rubie E.A., Ahmad M.F., Avruch J., Woodgett J.R. The stress-activated protein kinase subfamily of c-Jun kinases. Nature. 1994;369:156–160. doi: 10.1038/369156a0. PubMed DOI

Kallunki T., Su B., Tsigelny I., Sluss H.K., Derijard B., Moore G., Davis R., Karin M. JNK2 contains a specificity-determining region responsible for efficient C-Jun binding and phosphorylation. Genes Dev. 1994;8:2996–3007. doi: 10.1101/gad.8.24.2996. PubMed DOI

Davis R.J. Signal transduction by the JNK group of MAP kinases. Cell. 2000;103:239–252. doi: 10.1016/S0092-8674(00)00116-1. PubMed DOI

Hetz C., Martinon F., Rodriguez D., Glimcher L.H. The unfolded protein response: Integrating stress signals through the stress sensor IRE1α. Physiol. Rev. 2011;91:1219–1243. doi: 10.1152/physrev.00001.2011. PubMed DOI

Bogoyevitch M.A., Kobe B. Uses for JNK: The many and varied substrates of the c-Jun N-terminal kinases. Microbiol. Mol. Biol. Rev. 2006;70:1061–1095. doi: 10.1128/MMBR.00025-06. PubMed DOI PMC

Natalicchio A., Labarbuta R., Tortosa F., Biondi G., Marrano N., Peschechera A., Carchia E., Orlando M.R., Leonardini A., Cignarelli A., et al. Exendin-4 protects pancreatic β cells from palmitate-induced apoptosis by interfering with GPR40 and the MKK4/7 stress kinase signalling pathway. Diabetologia. 2013;56:2456–2466. doi: 10.1007/s00125-013-3028-4. PubMed DOI

Bachar E., Ariav Y., Ketzinel-Gilad M., Cerasi E., Kaiser N., Leibowitz G. Glucose amplifies fatty acid-induced endoplasmic reticulum stress in pancreatic β-cells via activation of mTORC1. PLoS ONE. 2009;4:1400. doi: 10.1371/journal.pone.0004954. PubMed DOI PMC

Cunha D.A., Hekerman P., Ladrière L., Bazarra-Castro A., Ortis F., Wakeham M.C., Moore F., Rasschaert J., Cardozo A.K., Bellomo E., et al. Initiation and execution of lipotoxic ER stress in pancreatic β-cells. J. Cell Sci. 2008;121:2308–2318. doi: 10.1242/jcs.026062. PubMed DOI PMC

Cunha D.A., Igoillo-Esteve M., Gurzov E.N., Germano C.M., Naamane N., Marhfour I., Fukaya M., Vanderwinden J.-M., Gysemans C., Mathieu C., et al. Death protein 5 and p53-upregulated modulator of apoptosis mediate the endoplasmic reticulum stress—mitochondrial dialog triggering lipotoxic rodent and human β-cell apoptosis. Diabetes. 2012;61:2763–2775. doi: 10.2337/db12-0123. PubMed DOI PMC

Oh Y.S., Lee Y.J., Kang Y., Han J., Lim O.K., Jun H.S. Exendin-4 inhibits glucolipotoxic ER stress in pancreatic β cells via regulation of SREBP1c and C/EBPβ transcription factors. J. Endocrinol. 2013;216:343–352. doi: 10.1530/JOE-12-0311. PubMed DOI

Prause M., Christensen D.P., Billestrup N., Mandrup-Poulsen T. JNK1 protects against glucolipotoxicity-mediated β-cell apoptosis. PLoS ONE. 2014;9:1400 PubMed PMC

Abaraviciene S.M., Lundquist I., Salehi A. Rosiglitazone counteracts palmitate-induced β-cell dysfunction by suppression of MAP kinase, inducible nitric oxide synthase and caspase 3 activities. Cell. Mol. Life Sci. 2008;65:2256–2265. doi: 10.1007/s00018-008-8100-8. PubMed DOI PMC

Kim K., Kim D.-H., Kim Y.H. Compound K protects MIN6N8 pancreatic β-cells against palmitate-induced apoptosis through modulating SAPK/JNK activation. Cell Biol. Int. 2010;34:75–80. doi: 10.1042/CBI20090020. PubMed DOI

Aikin R., Maysinger D., Rosenberg L. Cross-talk between phosphatidylinositol 3-kinase/AKT and c-jun NH2-terminal kinase mediates survival of isolated human islets. Endocrinology. 2004;145:4522–4531. doi: 10.1210/en.2004-0488. PubMed DOI

Nemcova-Fürstova V., Balusikova K., Sramek J., James R.F., Kovar J. Caspase-2 and JNK activated by saturated fatty acids are not involved in apoptosis induction but modulate ER stress in human pancreatic β-cells. Cell. Physiol. Biochem. 2013;31:277–289. PubMed

Komiya K., Uchida T., Ueno T., Koike M., Abe H., Hirose T., Kawamori R., Uchiyama Y., Kominami E., Fujitani Y., et al. Free fatty acids stimulate autophagy in pancreatic β-cells via JNK pathway. Biochem. Biophys. Res. Commun. 2010;401:561–567. doi: 10.1016/j.bbrc.2010.09.101. PubMed DOI

Akazawa Y., Cazanave S., Mott J.L., Elmi N., Bronk S.F., Kohno S., Charlton M.R., Gores G.J. Palmitoleate attenuates palmitate-induced Bim and PUMA up-regulation and hepatocyte lipoapoptosis. J. Hepatol. 2010;52:586–593. doi: 10.1016/j.jhep.2010.01.003. PubMed DOI PMC

Gunaratnam K., Vidal C., Boadle R., Thekkedam C., Duque G. Mechanisms of palmitate-induced cell death in human osteoblasts. Biol. Open. 2013;2:1382–1389. doi: 10.1242/bio.20136700. PubMed DOI PMC

Win S., Than T.A., Le B.H., Garcia-Ruiz C., Fernandez-Checa J.C., Kaplowitz N. Sab (Sh3bp5) dependence of JNK mediated inhibition of mitochondrial respiration in palmitic acid induced hepatocyte lipotoxicity. J. Hepatol. 2015;62:1367–1374. doi: 10.1016/j.jhep.2015.01.032. PubMed DOI PMC

Mellor H., Parker P.J. The extended protein kinase C superfamily. Biochem. J. 1998;332:281–292. doi: 10.1042/bj3320281. PubMed DOI PMC

Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of PKC. Science. 1992;258:607–614. doi: 10.1126/science.1411571. PubMed DOI

Kanashiro C.A., Khalil R.A. Signal transduction by protein kinase C in mammalian cells. Clin. Exp. Pharmacol. Physiol. 1998;25:974–985. doi: 10.1111/j.1440-1681.1998.tb02170.x. PubMed DOI

Reyland M.E. Protein kinase Cdelta and apoptosis. Biochem. Soc. Trans. 2007;35:1001–1004. doi: 10.1042/BST0351001. PubMed DOI

Zhao M., Xia L., Chen G.Q. Protein kinase C δ in apoptosis: A brief overview. Arch. Immunol. Ther. Exp. 2012;60:361–372. doi: 10.1007/s00005-012-0188-8. PubMed DOI

Murriel C.L., Churchill E., Inagaki K., Szweda L.I., Mochly-Rosen D. Protein kinase C delta activation induces apoptosis in response to cardiac ischemia and reperfusion damage: A mechanism involving BAD and the mitochondria. J. Biol. Chem. 2004;279:47985–47991. doi: 10.1074/jbc.M405071200. PubMed DOI

Lee J., Hong F., Kwon S., Kim S.S., Kim D.O., Kang H.S., Lee S.J., Ha J., Kim S.S. Activation of p38MAPK induces cell cycle arrest via inhibition of C-Raf/ERK pathway during muscle differentiation. Biochem. Biophys. Res. Commun. 2002;298:765–771. doi: 10.1016/S0006-291X(02)02562-7. PubMed DOI

Efimova T., Broome A.M., Eckert R.L. Protein kinase C delta regulates keratinocyte death and survival by regulating activity and subcellular localization of a p38delta-extracellular signal regulated kinase 1/2 complex. Mol. Cell. Biol. 2004;24:8167–8183. doi: 10.1128/MCB.24.18.8167-8183.2004. PubMed DOI PMC

Eitel K., Staiger H., Rieger J., Mischak H., Brandhorst H., Brendel M.D., Bretzel R.G., Häring H.U., Kellerer M. Protein kinase C delta activation and translocation to the nucleus are required for fatty acid-induced apoptosis of insulin-secreting cells. Diabetes. 2003;52:991–997. doi: 10.2337/diabetes.52.4.991. PubMed DOI

Simon M.N., Azevedo-Martins A.K., Amanso A.M., Carvalho C.R.O., Curi R. Persistent activation of Akt or ERK prevents the toxicity induced by saturated and polyunsaturated fatty acids in RINm5F β-cells. Toxicol. In Vitro. 2008;22:1018–1024. doi: 10.1016/j.tiv.2008.02.012. PubMed DOI

Alcáazar O., Qiu-yue Z., Gine E., Tamarit-Rodriguez J. Stimulation of islet protein kinase C translocation by palmitate requires metabolism of the fatty acid. Diabetes. 1997;46:1153–1158. doi: 10.2337/diab.46.7.1153. PubMed DOI

Carpenter L., Cordery D., Biden T.J. Inhibition of protein kinase C protects rat INS-1 cells against interleukin-1β and streptozotocin-induced apoptosis. Diabetes. 2002;51:317–324. doi: 10.2337/diabetes.51.2.317. PubMed DOI

Denning M.F., Wang Y., Nickoloff B.J., Wrone-Smith T. Protein kinase C δ is activated by caspase-dependent proteolysis during ultraviolet radiation-induced apoptosis of human keratinocytes. J. Biol. Chem. 1998;273:29995–30002. doi: 10.1074/jbc.273.45.29995. PubMed DOI

Reyland M.E., Anderson S.M., Matassa A.A., Barzen K.A., Quissell D.O. Protein kinase C delta is essential for etoposide-induced apoptosis in salivary gland acinar cells. J. Biol. Chem. 1999;274:19115–19123. doi: 10.1074/jbc.274.27.19115. PubMed DOI

Choi B.H., Hur E.M., Lee J.H., Jun D.J., Kim K.T. Protein kinase C δ-mediated proteasomal degradation of MAP kinase phosphatase-1 contributes to glutamate-induced neuronal cell death. J. Cell Sci. 2006;119:1329–1340. doi: 10.1242/jcs.02837. PubMed DOI

Jiang Y., Chen C., Li Z., Guo W., Gegner J.A., Lin S., Han J. Characterization of the structure and function of a new mitogen-activated protein kinase (p38b) J. Biol. Chem. 1996;271:17920–17926. doi: 10.1074/jbc.271.30.17920. PubMed DOI

Lechner C., Zahalka M.A., Giot J.F., Moler N.P.H., Ullrich A. ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation. Proc. Natl. Acad. Sci. USA. 1996;93:4355–4359. doi: 10.1073/pnas.93.9.4355. PubMed DOI PMC

Li Z., Jiang Y., Ulevitch R.J., Han J. The primary structure of p38γ: A new member of p38 group of MAP kinase. Biochem. Biophys. Res. Commun. 1996;228:334–340. doi: 10.1006/bbrc.1996.1662. PubMed DOI

Jiang Y., Gram H., Zhao M., New L., Gu J., Feng L., Di Padova F., Ulevitch R.J., Han J. Characterization of the structure and function of the fourth member of p38 group mitogen activated protein kinases, p38δ. J. Biol. Chem. 1997;272:30122–30128. doi: 10.1074/jbc.272.48.30122. PubMed DOI

Kumar S., McDonnell P.C., Gum R.J., Hand A.T., Lee J.C., Young P.R. Novel homologues of CSBP/p38 MAP kinase: activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles. Biochem. Biophys. Res. Commun. 1997;235:533–538. doi: 10.1006/bbrc.1997.6849. PubMed DOI

Moriguchi T., Kuroyanagi N., Yamaguchi K., Gotoh Y., Irie K., Kano T., Shirakabe K., Muro Y., Shibuya H., Matsumoto K., et al. A novel kinase cascade mediated by mitogen-activated protein kinase kinase 6 and MKK3. J. Biol. Chem. 1996;271:13675–13679. PubMed

Ichijo H., Nishida E., Irie K., ten Dijke P., Saitoh M., Moriguchi T., Takagi M., Matsumoto K., Miyazono K., Gotoh Y. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science. 1997;275:90–94. doi: 10.1126/science.275.5296.90. PubMed DOI

Zhang S., Han J., Sells M.A., Chernoff J., Knaus U.G., Ulevitch R.J., Bokoch G.M. Rho family GTPases regulate p38 MAP kinase through the downstream mediator Pak1. J. Biol. Chem. 1995;270:23934–23936. doi: 10.1074/jbc.270.41.23934. PubMed DOI

Cuenda A., Dorow D.S. Differential activation of stress-activated protein kinase kinases SKK4/MKK7 and SKK1/MKK4 by the mixed-lineage kinase-2 and mitogen-activated protein kinase kinase (MKK) kinase-1. Biochem. J. 1998;333:11–15. doi: 10.1042/bj3330011. PubMed DOI PMC

Takekawa M., Posas F., Saito H. A human homolog of the yeast Ssk2/Ssk22 MAP kinase kinase kinases, MTK1, mediates stress induced activation of the p38 and JNK pathways. EMBO J. 1997;16:4973–4982. doi: 10.1093/emboj/16.16.4973. PubMed DOI PMC

Bagrodia S., Derijard B., Davis R.J., Cerione R.A. Cdc42 and PAK mediated signaling leads to Jun kinase and p38 mitogen-activated protein kinase activation. J. Biol. Chem. 1995;270:27995–27998. PubMed

Zarubin T., Han J. Activation and signaling of the p38 MAP kinase pathway. Cell Res. 2005;15:11–18. doi: 10.1038/sj.cr.7290257. PubMed DOI

Cuenda A., Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim. Biophys. Acta. 2004;1773:1358–1375. doi: 10.1016/j.bbamcr.2007.03.010. PubMed DOI

Liu J., Chang F., Li F., Fu H., Wang J., Zhang S., Zhao J., Yin D. Palmitate promotes autophagy and apoptosis through ROS-dependent JNK and p38 MAPK. Biochem. Biophys. Res. Commun. 2015;463:262–267. doi: 10.1016/j.bbrc.2015.05.042. PubMed DOI

Sramek J., Nemcova-Fürstova V., Balusikova K., Daniel P., Jelinek M., James R.F., Kovar J. p38 MAPK is activated but does not play a key role during apoptosis induction by saturated fatty acid in human pancreatic β-cells. Int. J. Mol. Sci. 2016;17:159. doi: 10.3390/ijms17020159. PubMed DOI PMC

Yang G., Yang W., Wu L., Wang R. H2S, endoplasmic reticulum stress, and apoptosis of insulin-secreting β cells. J. Biol. Chem. 2007;282:16567–16576. doi: 10.1074/jbc.M700605200. PubMed DOI

Ma K., Nunemaker C.S., Wu R., Chakrabarti S.K., Taylor-Fishwick D.A., Nadler J.L. 12-Lipoxygenase products reduce insulin secretion and β-cell viability in human islets. J. Clin. Endocrinol. Metab. 2010;95:887–893. doi: 10.1210/jc.2009-1102. PubMed DOI PMC

Makeeva N., Myers J.W., Welsh N. Role of MKK3 and p38 MAPK in cytokine-induced death of insulin-producing cells. Biochem. J. 2006;393:129–139. doi: 10.1042/BJ20050814. PubMed DOI PMC

Saldeen J., Lee J.C., Welsh N. Role of p38 mitogen-activated protein kinase (p38 MAPK) in cytokine-induced rat islet cell apoptosis. Biochem. Pharmacol. 2001;61:1561–1569. doi: 10.1016/S0006-2952(01)00605-0. PubMed DOI

Chai W., Liu Z. p38 mitogen-activated protein kinase mediates palmitate-induced apoptosis but not inhibitor of nuclear factor-kappa B degradation in human coronary artery endothelial cells. Endocrinology. 2007;148:1622–1628. doi: 10.1210/en.2006-1068. PubMed DOI

Liu Z., Cao W. p38 mitogen-activated protein kinase: a critical node linking insulin resistance and cardiovascular diseases in type 2 diabetes mellitus. Endocr. Metab. Immune Disord. Drug Targets. 2009;9:38–46. doi: 10.2174/187153009787582397. PubMed DOI

Song Y., Li X., Li Y., Li N., Shi X., Ding H., Zhang Y., Li X., Liu G., Wang Z. Non-esterified fatty acids activate the ROS-p38-p53/Nrf2 signaling pathway to induce bovine hepatocyte apoptosis in vitro. Apoptosis. 2014;19:984–997. doi: 10.1007/s10495-014-0982-3. PubMed DOI

Bramanti V., Grasso S., Tibullo D., Giallongo C., Raciti G., Viola M., Avola R. Modulation of extracellular signal-related kinase, cyclin D1, glial fibrillary acidic protein, and vimentin expression in estradiol-pretreated astrocyte cultures treated with competence and progression growth factors. J. Neurosci. Res. 2015;93:1378–1387. doi: 10.1002/jnr.23606. PubMed DOI

Gudermann T. Multiple pathways of ERK activation by G protein-coupled receptors. Novartis Found. Symp. 2001;239:68–79. PubMed

Chang F., Steelman L.S., Lee J.T., Shelton J.G., Navolanic P.M., Blalock W.L., Franklin R.A., McCubrey J.A. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: Potential targeting for therapeutic intervention. Leukemia. 2003;17:1263–1293. doi: 10.1038/sj.leu.2402945. PubMed DOI

Kolch W., Heidecker G., Kochs G., Hummel R., Vahidi H., Mischak H., Finkenzeller G., Marme D., Rapp U.R. Protein kinase Ca activates RAF-1 by direct phosphorylation. Nature. 1993;364:249–252. doi: 10.1038/364249a0. PubMed DOI

Fabian J.R., Daar I.O., Morrison D.K. Critical tyrosine residues regulate the enzymatic and biological activity of Raf-1 kinase. Mol. Cell. Biol. 1993;13:7170–7179. doi: 10.1128/MCB.13.11.7170. PubMed DOI PMC

Diaz B., Barnard D., Filson A., MacDonald S., King A., Marshall M. Phosphorylation of Raf-1 serine 338-serine 339 is an essential regulatory event for Ras-dependent activation and biological signaling. Mol. Cell. Biol. 1997;17:4509–4516. doi: 10.1128/MCB.17.8.4509. PubMed DOI PMC

Chen Z., Gibson T.B., Robinson F., Silvestro L., Pearson G., Xu B., Wright A., Vanderbilt C., Cobb M.H. MAP Kinases. Chem. Rev. 2001;101:2449–2476. doi: 10.1021/cr000241p. PubMed DOI

Bramanti V., Grasso S., Tibullo D., Giallongo C., Pappa R., Brundo M.V., Tomassoni D., Viola M., Amenta F., Avola R. Neuroactive molecules and growth factors modulate cytoskeletal protein expression during astroglial cell proliferation and differentiation in culture. J. Neurosci. Res. 2016;94:90–98. doi: 10.1002/jnr.23678. PubMed DOI

Cagnol S., Chambard J.C. ERK and cell death: Mechanisms of ERK-induced cell death—Apoptosis, autophagy and senescence. FEBS J. 2010;277:2–21. doi: 10.1111/j.1742-4658.2009.07366.x. PubMed DOI

Guo J., Qian Y.Y., Xi X.X., Hu X.H., Zhu J.X., Han X. Blockage of ceramide metabolism exacerbates palmitate inhibition of pro-insulin gene expression in pancreatic β-cells. Mol. Cell. Biochem. 2010;338:283–290. doi: 10.1007/s11010-009-0362-4. PubMed DOI

Plaisance V., Perret V., Favrea D., Abderrahmania A., Yanga J.-Y., Widmanna C., Regazzi R. Role of the transcriptional factor C/EBP in free fatty acid-elicited β cell failure. Mol. Cell. Endocrinol. 2009;305:47–55. doi: 10.1016/j.mce.2008.12.005. PubMed DOI

Fontes G., Semache M., Hagman D.K., Tremblay C., Shah R., Rhodes C.J., Rutter J., Poitout V. Involvement of Per-Arnt-Sim Kinase and extracellular-regulated kinases-1/2 in palmitate inhibition of insulin gene expression in pancreatic β-cells. Diabetes. 2009;58:2048–2058. doi: 10.2337/db08-0579. PubMed DOI PMC

Watson M.L., Macrae K., Marley A.E., Hundal H.S. Chronic effects of palmitate overload on nutrient-induced insulin secretion and autocrine signalling in pancreatic MIN6 β cells. PLoS ONE. 2011;6:1400. doi: 10.1371/journal.pone.0025975. PubMed DOI PMC

Larsen C.M., Wadt K.A., Juhl L.F., Andersen H.U., Karlsen A.E., Su M.S., Seedorf K., Shapiro L., Dinarello C.A., Mandrup-Poulsen T. Interleukin-1β-induced rat pancreatic islet nitric oxide synthesis requires both the p38 and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases. J. Biol. Chem. 1998;273:15294–15300. doi: 10.1074/jbc.273.24.15294. PubMed DOI

Maedler K., Storling J., Sturis J., Zuellig R.A., Spinas G.A., Arkhammar P.O., Mandrup-Poulsen T., Donath M.Y. Glucose- and interleukin-1β-induced β-cell apoptosis requires Ca2+ influx and extracellular signal-regulated kinase (ERK) 1/2 activation and is prevented by a sulfonylurea receptor 1/inwardly rectifying K+ channel 6.2 (SUR/Kir6.2) selective potassium channel opener in human islets. Diabetes. 2004;53:1706–1713. PubMed

Lawrence M.C., McGlynn K., Park B.H., Cobb M.H. ERK1/2-dependent activation of transcription factors required for acute and chronic effects of glucose on the insulin gene promoter. J. Biol. Chem. 2005;280:26751–26759. doi: 10.1074/jbc.M503158200. PubMed DOI

Martino L., Masini M., Novelli M., Giacopelli D., Beffy P., Masiello P., de Tata V. The aryl receptor inhibitor epigallocatechin-3-gallate protects INS-1E β-cell line against acute dioxin toxicity. Chemosphere. 2013;93:1447–1455. doi: 10.1016/j.chemosphere.2013.06.026. PubMed DOI

Watanabe S., Wei F.Y., Matsunaga T., Matsunaga N., Kaitsuka T., Tomizawa K. Oxytocin protects against stress-induced cell death in murine pancreatic β-cells. Sci. Rep. 2016;6:25185. doi: 10.1038/srep25185. PubMed DOI PMC

Ahn M., Yoder S.M., Wang Z., Oh E., Ramalingam L., Tunduguru R., Thurmond D.C. The p21-activated kinase (PAK1) is involved in diet-induced β cell mass expansion and survival in mice and human islets. Diabetologia. 2016 doi: 10.1007/s00125-016-4042-0. in press. PubMed DOI PMC

Kim J.E., Ahn M.W., Baek S.H., Lee I.K., Kim Y.W., Kim J.Y., Dan J.M., Park S.Y. AMPK activator, AICAR, inhibits palmitate-induced apoptosis in osteoblast. Bone. 2008;43:394–404. doi: 10.1016/j.bone.2008.03.021. PubMed DOI

Dong X., Bi L., He S., Meng G., Wei B., Jia S., Liu J. FFAs-ROS-ERK/P38 pathway plays a key role in adipocyte lipotoxicity on osteoblasts in co-culture. Biochimie. 2014;101:123–131. doi: 10.1016/j.biochi.2014.01.002. PubMed DOI

Shi G., Sun C., Gu W., Yang M., Zhang X., Zhai N., Lu Y., Zhang Z., Shou P., Zhang Z., Ning G. Free fatty acid receptor 2, a candidate target for type 1 diabetes, induces cell apoptosis through ERK signaling. J. Mol. Endocrinol. 2014;53:367–380. doi: 10.1530/JME-14-0065. PubMed DOI

Hanada M., Feng J., Hemmings B.A. Structure, regulation and function of PKB/AKT—A major therapeutic target. Biochim. Biophys. Acta. 2004;1697:3–16. doi: 10.1016/j.bbapap.2003.11.009. PubMed DOI

Morales B.M., de Plata A.C. Role of AKT/mTORC1 pathway in pancreatic β-cell proliferation. Colomb. Med. 2012;43:235–243. PubMed PMC

Olsson A.K., Dimberg A., Kreuger J., Claesson-Welsh L. VEGF receptor signalling—In control of vascular function. Nat. Rev. Mol. Cell Biol. 2006;7:359–371. doi: 10.1038/nrm1911. PubMed DOI

Kim S.-J., Winter K., Nian C., Tsuneoka M., Koda Y., McIntosh C.H.S. Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic Β cell survival is dependent upon phosphatidylinositol3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor FoxO1, and down-regulation of bax expression. J. Biol. Chem. 2005;280:22297–22307. PubMed

Del Peso L., Gonzalez-Garcia M., Page C., Herrera R., Nunez G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science. 1997;278:687–689. doi: 10.1126/science.278.5338.687. PubMed DOI

Ozes O.N., Mayo L.D., Gustin J.A., Pfeffer S.R., Pfeffer L.M., Donner D.B. NF-κB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature. 1999;401:82–85. doi: 10.1038/43466. PubMed DOI

Nicoletti-Carvalho J.E., Nogueira T.C., Gorjão R., Bromati C.R., Yamanaka T.S., Boschero A.C., Velloso L.A., Curi R., Anhê G.F., Bordin S. UPR-mediated TRIB3 expression correlates with reduced AKT phosphorylation and inability of interleukin 6 to overcome palmitate-induced apoptosis in RINm5F cells. J. Endocrinol. 2010;206:183–193. doi: 10.1677/JOE-09-0356. PubMed DOI

Li X.J., Guo Q.H., Wang X., Xue B., Sun L.Q., Meng Q.T., Lu J.M., Mu Y.M. LRP16 gene protects mouse insulinoma MIN6 cells against fatty acid-induced apoptosis through Akt/FoxO1 signaling. Chin. Med. J. 2012;125:1695–1702. PubMed

Shao S., Nie M., Chen C., Chen X., Zhang M., Yuan G., Yu X., Yang Y. Protective action of liraglutide in β cells under lipotoxic stress via PI3K/Akt/FoxO1 pathway. J. Cell. Biochem. 2014;115:1166–1175. doi: 10.1002/jcb.24763. PubMed DOI

Hao F., Kang J., Cao Y., Fan S., Yang H., An Y., Pan Y., Tie L., Li X. Curcumin attenuates palmitate-induced apoptosis in MIN6 pancreatic β-cells through PI3K/Akt/FoxO1 and mitochondrial survival pathways. Apoptosis. 2015;20:1420–1432. doi: 10.1007/s10495-015-1150-0. PubMed DOI

Qin L., Wang Z., Tao L., Wang Y. ER stress negatively regulates AKT/TSC/mTOR pathway to enhance autophagy. Autophagy. 2010;6:239–247. doi: 10.4161/auto.6.2.11062. PubMed DOI

Nakajima S., Hiramatsu N., Hayakawa K., Saito Y., Kato H., Huang T., Yao J., Paton A.W., Paton J.C., Kitamura M. Selective abrogation of BiP/GRP78 blunts activation of NF-κB through the ATF6 branch of the UPR: Involvement of C/EBPβ and mTOR-dependent dephosphorylation of Akt. Mol. Cell. Biol. 2011;31:1710–1718. doi: 10.1128/MCB.00939-10. PubMed DOI PMC

Tuttle R.L., Gill N.S., Pugh W., Lee J.P., Koeberlein B., Furth E.E., Polonsky K.S., Naji A., Birnbaum M.J. Regulation of pancreatic β-cell growth and survival by the serine/threonine protein kinase Akt1/PKBalpha. Nat. Med. 2001;7:1133–1137. doi: 10.1038/nm1001-1133. PubMed DOI

Kim N., Jeong S., Jing K., Shin S., Kim S., Heo J.Y., Kweon G.R., Park S.K., Wu T., Park J.I., et al. Docosahexaenoic acid induces cell death in human non-small cell lung cancer cells by repressing mTOR via AMPK activation and PI3K/Akt inhibition. BioMed Res. Int. 2015;2015:239764. doi: 10.1155/2015/239764. PubMed DOI PMC

Su J., Zhou H., Tao Y., Guo J., Guo Z., Zhang S., Zhang Y., Huang Y., Tang Y., Dong Q., et al. G-CSF protects human brain vascular endothelial cells injury induced by high glucose, free fatty acids and hypoxia through MAPK and Akt signaling. PLoS ONE. 2015;10:1400 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace