Molecular Mechanisms of Apoptosis Induction and Its Regulation by Fatty Acids in Pancreatic β-Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
PROGRES Q36
Univerzita Karlova v Praze
PubMed
33924206
PubMed Central
PMC8074590
DOI
10.3390/ijms22084285
PII: ijms22084285
Knihovny.cz E-zdroje
- Klíčová slova
- ER stress, apoptosis induction, autophagy, caspase, fatty acid metabolism, kinase, pancreatic β-cell, saturated fatty acid, type 2 diabetes mellitus, unsaturated fatty acid,
- MeSH
- apoptóza * genetika MeSH
- beta-buňky metabolismus MeSH
- biologické modely MeSH
- diabetes mellitus 2. typu etiologie metabolismus MeSH
- endoplazmatické retikulum metabolismus MeSH
- fyziologický stres MeSH
- lidé MeSH
- mastné kyseliny metabolismus MeSH
- metabolismus lipidů MeSH
- mitochondrie genetika metabolismus MeSH
- signální transdukce MeSH
- viabilita buněk genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- mastné kyseliny MeSH
Pancreatic β-cell failure and death contribute significantly to the pathogenesis of type 2 diabetes. One of the main factors responsible for β-cell dysfunction and subsequent cell death is chronic exposure to increased concentrations of FAs (fatty acids). The effect of FAs seems to depend particularly on the degree of their saturation. Saturated FAs induce apoptosis in pancreatic β-cells, whereas unsaturated FAs are well tolerated and are even capable of inhibiting the pro-apoptotic effect of saturated FAs. Molecular mechanisms of apoptosis induction by saturated FAs in β-cells are not completely elucidated. Saturated FAs induce ER stress, which in turn leads to activation of all ER stress pathways. When ER stress is severe or prolonged, apoptosis is induced. The main mediator seems to be the CHOP transcription factor. Via regulation of expression/activity of pro- and anti-apoptotic Bcl-2 family members, and potentially also through the increase in ROS production, CHOP switches on the mitochondrial pathway of apoptosis induction. ER stress signalling also possibly leads to autophagy signalling, which may activate caspase-8. Saturated FAs activate or inhibit various signalling pathways, i.e., p38 MAPK signalling, ERK signalling, ceramide signalling, Akt signalling and PKCδ signalling. This may lead to the activation of the mitochondrial pathway of apoptosis, as well. Particularly, the inhibition of the pro-survival Akt signalling seems to play an important role. This inhibition may be mediated by multiple pathways (e.g., ER stress signalling, PKCδ and ceramide) and could also consequence in autophagy signalling. Experimental evidence indicates the involvement of certain miRNAs in mechanisms of FA-induced β-cell apoptosis, as well. In the rather rare situations when unsaturated FAs are also shown to be pro-apoptotic, the mechanisms mediating this effect in β-cells seem to be the same as for saturated FAs. To conclude, FA-induced apoptosis rather appears to be preceded by complex cross talks of multiple signalling pathways. Some of these pathways may be regulated by decreased membrane fluidity due to saturated FA incorporation. Few data are available concerning molecular mechanisms mediating the protective effect of unsaturated FAs on the effect of saturated FAs. It seems that the main possible mechanism represents a rather inhibitory intervention into saturated FA-induced pro-apoptotic signalling than activation of some pro-survival signalling pathway(s) or metabolic interference in β-cells. This inhibitory intervention may be due to an increase of membrane fluidity.
Zobrazit více v PubMed
Maedler K., Oberholzer J., Bucher P., Spinas G.A., Donath M.Y. Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function. Diabetes. 2003;52:726–733. doi: 10.2337/diabetes.52.3.726. PubMed DOI
Maedler K., Spinas G.A., Dyntar D., Moritz W., Kaiser N., Donath M.Y. Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function. Diabetes. 2001;50:69–76. doi: 10.2337/diabetes.50.1.69. PubMed DOI
Lupi R., Dotta F., Marselli L., Del Guerra S., Masini M., Santangelo C., Patane G., Boggi U., Piro S., Anello M., et al. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: Evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes. 2002;51:1437–1442. doi: 10.2337/diabetes.51.5.1437. PubMed DOI
El Assaad W., Buteau J., Peyot M.L., Nolan C., Roduit R., Hardy S., Joly E., Dbaibo G., Rosenberg L., Prentki M. Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death. Endocrinology. 2003;144:4154–4163. doi: 10.1210/en.2003-0410. PubMed DOI
Kharroubi I., Ladriere L., Cardozo A.K., Dogusan Z., Cnop M., Eizirik D.L. Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: Role of nuclear factor-kappaB and endoplasmic reticulum stress. Endocrinology. 2004;145:5087–5096. doi: 10.1210/en.2004-0478. PubMed DOI
Welters H.J., Tadayyon M., Scarpello J.H., Smith S.A., Morgan N.G. Mono-unsaturated fatty acids protect against beta-cell apoptosis induced by saturated fatty acids, serum withdrawal or cytokine exposure. FEBS Lett. 2004;560:103–108. doi: 10.1016/S0014-5793(04)00079-1. PubMed DOI
Higa M., Shimabukuro M., Shimajiri Y., Takasu N., Shinjyo T., Inaba T. Protein kinase B/Akt signalling is required for palmitate-induced beta-cell lipotoxicity. Diabetes Obes. Metab. 2006;8:228–233. doi: 10.1111/j.1463-1326.2005.00488.x. PubMed DOI
Karaskov E., Scott C., Zhang L., Teodoro T., Ravazzola M., Volchuk A. Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis. Endocrinology. 2006;147:3398–3407. doi: 10.1210/en.2005-1494. PubMed DOI
Hennige A.M., Ranta F., Heinzelmann I., Dufer M., Michael D., Braumuller H., Lutz S.Z., Lammers R., Drews G., Bosch F., et al. Overexpression of kinase-negative protein kinase Cdelta in pancreatic beta-cells protects mice from diet-induced glucose intolerance and beta-cell dysfunction. Diabetes. 2010;59:119–127. doi: 10.2337/db09-0512. PubMed DOI PMC
Eitel K., Staiger H., Brendel M.D., Brandhorst D., Bretzel R.G., Haring H.U., Kellerer M. Different role of saturated and unsaturated fatty acids in beta-cell apoptosis. Biochem. Biophys. Res. Commun. 2002;299:853–856. doi: 10.1016/S0006-291X(02)02752-3. PubMed DOI
Welters H.J., Diakogiannaki E., Mordue J.M., Tadayyon M., Smith S.A., Morgan N.G. Differential protective effects of palmitoleic acid and cAMP on caspase activation and cell viability in pancreatic beta-cells exposed to palmitate. Apoptosis. 2006;11:1231–1238. doi: 10.1007/s10495-006-7450-7. PubMed DOI
Sone H., Kagawa Y. Pancreatic beta cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice. Diabetologia. 2005;48:58–67. doi: 10.1007/s00125-004-1605-2. PubMed DOI
Diakogiannaki E., Welters H.J., Morgan N.G. Differential regulation of the endoplasmic reticulum stress response in pancreatic beta-cells exposed to long-chain saturated and monounsaturated fatty acids. J. Endocrinol. 2008;197:553–563. doi: 10.1677/JOE-08-0041. PubMed DOI
Furstova V., Kopska T., James R.F., Kovar J. Comparison of the effect of individual saturated and unsaturated fatty acids on cell growth and death induction in the human pancreatic beta-cell line NES2Y. Life Sci. 2008;82:684–691. doi: 10.1016/j.lfs.2007.12.023. PubMed DOI
Nemcova-Furstova V., James R.F.L., Kovar J. Inhibitory Effect of Unsaturated Fatty Acids on Saturated Fatty Acid-Induced Apoptosis in Human Pancreatic beta-Cells: Activation of Caspases and ER Stress Induction. Cell. Physiol. Biochem. 2011;27:525–538. doi: 10.1159/000329954. PubMed DOI
Oh Y.S., Bae G.D., Baek D.J., Park E.Y., Jun H.S. Fatty Acid-Induced Lipotoxicity in Pancreatic Beta-Cells During Development of Type 2 Diabetes. Front. Endocrinol. 2018;9:10. doi: 10.3389/fendo.2018.00384. PubMed DOI PMC
Joseph J.W., Koshkin V., Zhang C.Y., Wang J., Lowell B.B., Chan C.B., Wheeler M.B. Uncoupling protein 2 knockout mice have enhanced insulin secretory capacity after a high-fat diet. Diabetes. 2002;51:3211–3219. doi: 10.2337/diabetes.51.11.3211. PubMed DOI
Sauter N.S., Schulthess F.T., Galasso R., Castellani L.W., Maedler K. The antiinflammatory cytokine interleukin-1 receptor antagonist protects from high-fat diet-induced hyperglycemia. Endocrinology. 2008;149:2208–2218. doi: 10.1210/en.2007-1059. PubMed DOI PMC
Yang L., Yao D.D., Yang H.Y., Wei Y.J., Peng Y.R., Ding Y.F., Shu L. Puerarin Protects Pancreatic beta-Cells in Obese Diabetic Mice via Activation of GLP-1R Signaling. Mol. Endocrinol. 2016;30:361–371. doi: 10.1210/me.2015-1213. PubMed DOI PMC
Li J., Xu S.S., Liu Y.Q., Yan Z., Zhang F., Lv Q.G., Tong N.W. Activated PPAR beta/delta Protects Pancreatic beta Cells in Type 2 Diabetic Goto-Kakizaki Rats from Lipoapoptosis via GPR40. Lipids. 2019;54:603–616. doi: 10.1002/lipd.12182. PubMed DOI
Morgan N.G. Fatty acids and beta-cell toxicity. Curr. Opin. Clin. Nutr. Metab. Care. 2009;12:117–122. doi: 10.1097/MCO.0b013e328321e423. PubMed DOI
Diakogiannaki E., Dhayal S., Childs C.E., Calder P.C., Welters H.J., Morgan N.G. Mechanisms involved in the cytotoxic and cytoprotective actions of saturated versus monounsaturated long-chain fatty acids in pancreatic beta-cells. J. Endocrinol. 2007;194:283–291. doi: 10.1677/JOE-07-0082. PubMed DOI PMC
Newsholme P., Keane D., Welters H.J., Morgan N.G. Life and death decisions of the pancreatic beta-cell: The role of fatty acids. Clin. Sci. 2007;112:27–42. doi: 10.1042/CS20060115. PubMed DOI
Dhayal S., Welters H.J., Morgan N.G. Structural requirements for the cytoprotective actions of mono-unsaturated fatty acids in the pancreatic beta-cell line, BRIN-BD11. Br. J. Pharm. 2008;153:1718–1727. doi: 10.1038/bjp.2008.43. PubMed DOI PMC
Plotz T., von Hanstein A.S., Krummel B., Laporte A., Mehmeti I., Lenzen S. Structure-toxicity relationships of saturated and unsaturated free fatty acids for elucidating the lipotoxic effects in human EndoC-beta H1 beta-cells. Biochim. Biophys. Acta Mol. Basis Dis. 2019;1865:165525. doi: 10.1016/j.bbadis.2019.08.001. PubMed DOI
Ingalls S.T., Xu Y., Hoppel C.L. Determination of plasma non-esterified fatty acids and triglyceride fatty acids by gas chromatography of their methyl esters after isolation by column chromatography on silica gel. J. Chromatogr. B Biomed. Appl. 1995;666:1–12. doi: 10.1016/0378-4347(94)00555-J. PubMed DOI
Lagerstedt S.A., Hinrichs D.R., Batt S.M., Magera M.J., Rinaldo P., McConnell J.P. Quantitative determination of plasma c8-c26 total fatty acids for the biochemical diagnosis of nutritional and metabolic disorders. Mol. Genet. Metab. 2001;73:38–45. doi: 10.1006/mgme.2001.3170. PubMed DOI
Cnop M., Ladriere L., Hekerman P., Ortis F., Cardozo A.K., Dogusan Z., Flamez D., Boyce M., Yuan J., Eizirik D.L. Selective inhibition of eukaryotic translation initiation factor 2 alpha dephosphorylation potentiates fatty acid-induced endoplasmic reticulum stress and causes pancreatic beta-cell dysfunction and apoptosis. J. Biol. Chem. 2007;282:3989–3997. doi: 10.1074/jbc.M607627200. PubMed DOI
Liu X., Zeng X., Chen X., Luo R., Li L., Wang C., Liu J., Cheng J., Lu Y., Chen Y. Oleic acid protects insulin-secreting INS-1E cells against palmitic acid-induced lipotoxicity along with an amelioration of ER stress. Endocrine. 2019;64:512–524. doi: 10.1007/s12020-019-01867-3. PubMed DOI
Lai E., Bikopoulos G., Wheeler M.B., Rozakis-Adcock M., Volchuk A. Differential activation of ER stress and apoptosis in response to chronically elevated free fatty acids in pancreatic beta-cells. Am. J. Physiol. Endocrinol. Metab. 2008;294:E540–E550. doi: 10.1152/ajpendo.00478.2007. PubMed DOI
Ladriere L., Igoillo-Esteve M., Cunha D.A., Brion J.P., Bugliani M., Marchetti P., Eizirik D.L., Cnop M. Enhanced signaling downstream of ribonucleic Acid-activated protein kinase-like endoplasmic reticulum kinase potentiates lipotoxic endoplasmic reticulum stress in human islets. J. Clin. Endocrinol. Metab. 2010;95:1442–1449. doi: 10.1210/jc.2009-2322. PubMed DOI
Thorn K., Hovsepyan M., Bergsten P. Reduced levels of SCD1 accentuate palmitate-induced stress in insulin-producing beta-cells. Lipids Health Dis. 2010;9:108. doi: 10.1186/1476-511X-9-108. PubMed DOI PMC
Hirota N., Otabe S., Nakayama H., Yuan X., Yamada K. Sequential activation of caspases and synergistic beta-cell cytotoxicity by palmitate and anti-Fas antibodies. Life Sci. 2006;79:1312–1316. doi: 10.1016/j.lfs.2006.03.048. PubMed DOI
Baldwin A.C., Green C.D., Olson L.K., Moxley M.A., Corbett J.A. A role for aberrant protein palmitoylation in FFA-induced ER stress and beta cell death. Am. J. Physiol. Endocrinol. Metab. 2012;302:E1390–E1398. doi: 10.1152/ajpendo.00519.2011. PubMed DOI PMC
Tuei V.C., Ha J.S., Ha C.E. Effects of human serum albumin complexed with free fatty acids on cell viability and insulin secretion in the hamster pancreatic beta-cell line HIT-T15. Life Sci. 2011;88:810–818. doi: 10.1016/j.lfs.2011.02.022. PubMed DOI
Busch A.K., Gurisik E., Cordery D.V., Sudlow M., Denyer G.S., Laybutt D.R., Hughes W.E., Biden T.J. Increased fatty acid desaturation and enhanced expression of stearoyl coenzyme A desaturase protects pancreatic beta-cells from lipoapoptosis. Diabetes. 2005;54:2917–2924. doi: 10.2337/diabetes.54.10.2917. PubMed DOI
Choi S.E., Kim H.E., Shin H.C., Jang H.J., Lee K.W., Kim Y., Kang S.S., Chun J., Kang Y. Involvement of Ca2+-mediated apoptotic signals in palmitate-induced MIN6N8a beta cell death. Mol. Cell. Endocrinol. 2007;272:50–62. doi: 10.1016/j.mce.2007.04.004. PubMed DOI
Laybutt D.R., Preston A.M., Akerfeldt M.C., Kench J.G., Busch A.K., Biankin A.V., Biden T.J. Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia. 2007;50:752–763. doi: 10.1007/s00125-006-0590-z. PubMed DOI
Jeffrey K.D., Alejandro E.U., Luciani D.S., Kalynyak T.B., Hu X., Li H., Lin Y., Townsend R.R., Polonsky K.S., Johnson J.D. Carboxypeptidase E mediates palmitate-induced beta-cell ER stress and apoptosis. Proc. Natl. Acad. Sci. USA. 2008;105:8452–8457. doi: 10.1073/pnas.0711232105. PubMed DOI PMC
Eitel K., Staiger H., Rieger J., Mischak H., Brandhorst H., Brendel M.D., Bretzel R.G., Haring H.U., Kellerer M. Protein kinase C delta activation and translocation to the nucleus are required for fatty acid-induced apoptosis of insulin-secreting cells. Diabetes. 2003;52:991–997. doi: 10.2337/diabetes.52.4.991. PubMed DOI
Gehrmann W., Wurdemann W., Plotz T., Jorns A., Lenzen S., Elsner M. Antagonism Between Saturated and Unsaturated Fatty Acids in ROS Mediated Lipotoxicity in Rat Insulin-Producing Cells. Cell. Physiol. Biochem. 2015;36:852–865. doi: 10.1159/000430261. PubMed DOI
Sarnyai F., Donko M.B., Matyasi J., Gor-Nagy Z., Marczi I., Simon-Szabo L., Zambo V., Somogyi A., Csizmadia T., Low P., et al. Cellular toxicity of dietary trans fatty acids and its correlation with ceramide and diglyceride accumulation. Food Chem. Toxicol. 2019;124:324–335. doi: 10.1016/j.fct.2018.12.022. PubMed DOI
Okuyama R., Fujiwara T., Ohsumi J. High glucose potentiates palmitate-induced NO-mediated cytotoxicity through generation of superoxide in clonal beta-cell HIT-T15. FEBS Lett. 2003;545:219–223. doi: 10.1016/S0014-5793(03)00534-9. PubMed DOI
Moffitt J.H., Fielding B.A., Evershed R., Berstan R., Currie J.M., Clark A. Adverse physicochemical properties of tripalmitin in beta cells lead to morphological changes and lipotoxicity in vitro. Diabetologia. 2005;48:1819–1829. doi: 10.1007/s00125-005-1861-9. PubMed DOI
Qi Y., Xia P. Cellular Inhibitor of Apoptosis Protein-1 (cIAP1) Plays a Critical Role in β-Cell Survival under Endoplasmic Reticulum Stress: Promoting ubiquitination and degradation of C/EBP Homologous Protein (CHOP) J. Biol. Chem. 2012;287:32236–32245. doi: 10.1074/jbc.M112.362160. PubMed DOI PMC
Sommerweiss D., Gorski T., Richter S., Garten A., Kiess W. Oleate rescues INS-1E beta-cells from palmitate-induced apoptosis by preventing activation of the unfolded protein response. Biochem. Biophys. Res. Commun. 2013;441:770–776. doi: 10.1016/j.bbrc.2013.10.130. PubMed DOI
Vasu S., McClenaghan N.H., McCluskey J.T., Flatt P.R. Effects of lipotoxicity on a novel insulin-secreting human pancreatic beta-cell line, 1.1B4. Biol. Chem. 2013;394:909–918. doi: 10.1515/hsz-2013-0115. PubMed DOI
Nemecz M., Constantin A., Dumitrescu M., Alexandru N., Filippi A., Tanko G., Georgescu A. The Distinct Effects of Palmitic and Oleic Acid on Pancreatic Beta Cell Function: The Elucidation of Associated Mechanisms and Effector Molecules. Front. Pharm. 2018;9:1554. doi: 10.3389/fphar.2018.01554. PubMed DOI PMC
Jurado-Ruiz E., Alvarez-Amor L., Varela L.M., Berna G., Parra-Camacho M.S., Oliveras-Lopez M.J., Martinez-Force E., Rojas A., Hmadcha A., Soria B., et al. Extra virgin olive oil diet intervention improves insulin resistance and islet performance in diet-induced diabetes in mice. Sci. Rep. 2019;9:13. doi: 10.1038/s41598-019-47904-z. PubMed DOI PMC
Cnop M., Hannaert J.C., Hoorens A., Eizirik D.L., Pipeleers D.G. Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes. 2001;50:1771–1777. doi: 10.2337/diabetes.50.8.1771. PubMed DOI
Cnop M., Hannaert J.C., Pipeleers D.G. Troglitazone does not protect rat pancreatic beta cells against free fatty acid-induced cytotoxicity. Biochem. Pharm. 2002;63:1281–1285. doi: 10.1016/S0006-2952(02)00860-2. PubMed DOI
Wrede C.E., Dickson L.M., Lingohr M.K., Briaud I., Rhodes C.J. Protein kinase B/Akt prevents fatty acid-induced apoptosis in pancreatic beta-cells (INS-1) J. Biol. Chem. 2002;277:49676–49684. doi: 10.1074/jbc.M208756200. PubMed DOI
Maestre I., Jordan J., Calvo S., Reig J.A., Cena V., Soria B., Prentki M., Roche E. Mitochondrial dysfunction is involved in apoptosis induced by serum withdrawal and fatty acids in the beta-cell line INS-1. Endocrinology. 2003;144:335–345. doi: 10.1210/en.2001-211282. PubMed DOI
Cunha D.A., Hekerman P., Ladriere L., Bazarra-Castro A., Ortis F., Wakeham M.C., Moore F., Rasschaert J., Cardozo A.K., Bellomo E., et al. Initiation and execution of lipotoxic ER stress in pancreatic beta-cells. J. Cell Sci. 2008;121:2308–2318. doi: 10.1242/jcs.026062. PubMed DOI PMC
Li J., Liu X., Ran X., Chen J., Li X., Wu W., Huang H., Huang H., Long Y., Liang J., et al. Sterol regulatory element-binding protein-1c knockdown protected INS-1E cells from lipotoxicity. Diabetes Obes. Metab. 2010;12:35–46. doi: 10.1111/j.1463-1326.2009.01093.x. PubMed DOI
Tuo Y., Wang D., Li S., Chen C. Long-term exposure of INS-1 rat insulinoma cells to linoleic acid and glucose in vitro affects cell viability and function through mitochondrial-mediated pathways. Endocrine. 2011;39:128–138. doi: 10.1007/s12020-010-9432-3. PubMed DOI
Plotz T., Krummel B., Laporte A., Pingitore A., Persaud S.J., Jorns A., Elsner M., Mehmeti I., Lenzen S. The monounsaturated fatty acid oleate is the major physiological toxic free fatty acid for human beta cells. Nutr. Diabetes. 2017;7:1–6. doi: 10.1038/s41387-017-0005-x. PubMed DOI PMC
Dhayal S., Morgan N.G. Structure-activity relationships influencing lipid-induced changes in eIF2alpha phosphorylation and cell viability in BRIN-BD11 cells. FEBS Lett. 2011;585:2243–2248. doi: 10.1016/j.febslet.2011.05.045. PubMed DOI
Bellini L., Campana M., Rouch C., Chacinska M., Bugliani M., Meneyrol K., Hainault I., Lenoir V., Denom J., Veret J., et al. Protective role of the ELOVL2/docosahexaenoic acid axis in glucolipotoxicity-induced apoptosis in rodent beta cells and human islets. Diabetologia. 2018;61:1780–1793. doi: 10.1007/s00125-018-4629-8. PubMed DOI
Sargsyan E., Artemenko K., Manukyan L., Bergquist J., Bergsten P. Oleate protects beta-cells from the toxic effect of palmitate by activating pro-survival pathways of the ER stress response. Biochim. Biophys. Acta. 2016;1861:1151–1160. doi: 10.1016/j.bbalip.2016.06.012. PubMed DOI
Plotz T., Hartmann M., Lenzen S., Elsner M. The role of lipid droplet formation in the protection of unsaturated fatty acids against palmitic acid induced lipotoxicity to rat insulin-producing cells. Nutr. Metab. 2016;13:1–11. doi: 10.1186/s12986-016-0076-z. PubMed DOI PMC
Beeharry N., Chambers J.A., Green I.C. Fatty acid protection from palmitic acid-induced apoptosis is lost following PI3-kinase inhibition. Apoptosis. 2004;9:599–607. doi: 10.1023/B:APPT.0000038039.82506.0c. PubMed DOI
Zhu Y.X., Zhang X.Y., Zhang L., Zhang M.L., Li L., Luo D., Zhong Y. Perilipin5 protects against lipotoxicity and alleviates endoplasmic reticulum stress in pancreatic beta-cells. Nutr. Metab. 2019;16:14. doi: 10.1186/s12986-019-0375-2. PubMed DOI PMC
McGarry J.D., Brown N.F. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur. J. Biochem. 1997;244:1–14. doi: 10.1111/j.1432-1033.1997.00001.x. PubMed DOI
Shimabukuro M., Zhou Y.T., Levi M., Unger R.H. Fatty acid-induced beta cell apoptosis: A link between obesity and diabetes. Proc. Natl. Acad. Sci. USA. 1998;95:2498–2502. doi: 10.1073/pnas.95.5.2498. PubMed DOI PMC
Wang X., Zhou L.B., Li G., Luo T.H., Gu Y.Y., Qian L., Fu X.L., Li F.Y., Li J.P., Luo M. Palmitate activates AMP-activated protein kinase and regulates insulin secretion from beta cells. Biochem. Biophys. Res. Commun. 2007;352:463–468. doi: 10.1016/j.bbrc.2006.11.032. PubMed DOI
Fu A., Eberhard C.E., Screaton R.A. Role of AMPK in pancreatic beta cell function. Mol. Cell. Endocrinol. 2013;366:127–134. doi: 10.1016/j.mce.2012.06.020. PubMed DOI
Dai Y.L., Huang S.L., Leng Y. AICAR and Metformin Exert AMPK-dependent Effects on INS-1E Pancreatic beta-cell Apoptosis via Differential Downstream Mechanisms. Int. J. Biol. Sci. 2015;11:1272–1280. doi: 10.7150/ijbs.12108. PubMed DOI PMC
Oshima M., Pechberty S., Bellini L., Gopel S.O., Campana M., Rouch C., Dairou J., Cosentino C., Fantuzzi F., Toivonen S., et al. Stearoyl CoA desaturase is a gatekeeper that protects human beta cells against lipotoxicity and maintains their identity. Diabetologia. 2020;63:395–409. doi: 10.1007/s00125-019-05046-x. PubMed DOI PMC
Janikiewicz J., Hanzelka K., Dziewulska A., Kozinski K., Dobrzyn P., Bernas T., Dobrzyn A. Inhibition of SCD1 impairs palmitate-derived autophagy at the step of autophagosome-lysosome fusion in pancreatic beta-cells. J. Lipid. Res. 2015;56:1901–1911. doi: 10.1194/jlr.M059980. PubMed DOI PMC
Briaud I., Harmon J.S., Kelpe C.L., Segu V.B., Poitout V. Lipotoxicity of the pancreatic beta-cell is associated with glucose-dependent esterification of fatty acids into neutral lipids. Diabetes. 2001;50:315–321. doi: 10.2337/diabetes.50.2.315. PubMed DOI PMC
Listenberger L.L., Han X., Lewis S.E., Cases S., Farese R.V., Jr., Ory D.S., Schaffer J.E. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl. Acad. Sci. USA. 2003;100:3077–3082. doi: 10.1073/pnas.0630588100. PubMed DOI PMC
Chen E., Tsai T.H., Li L., Saha P., Chan L., Chang B.H.J. PLIN2 is a Key Regulator of the Unfolded Protein Response and Endoplasmic Reticulum Stress Resolution in Pancreatic beta Cells. Sci. Rep. 2017;7:12. PubMed PMC
Kelpe C.L., Moore P.C., Parazzoli S.D., Wicksteed B., Rhodes C.J., Poitout V. Palmitate inhibition of insulin gene expression is mediated at the transcriptional level via ceramide synthesis. J. Biol. Chem. 2003;278:30015–30021. doi: 10.1074/jbc.M302548200. PubMed DOI
Manukyan L., Ubhayasekera S., Bergquist J., Sargsyan E., Bergsten P. Palmitate-Induced Impairments of beta-Cell Function Are Linked With Generation of Specific Ceramide Species via Acylation of Sphingosine. Endocrinology. 2015;156:802–812. doi: 10.1210/en.2014-1467. PubMed DOI
Shimabukuro M., Higa M., Zhou Y.T., Wang M.Y., Newgard C.B., Unger R.H. Lipoapoptosis in beta-cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression. J. Biol. Chem. 1998;273:32487–32490. doi: 10.1074/jbc.273.49.32487. PubMed DOI
Veret J., Coant N., Berdyshev E.V., Skobeleva A., Therville N., Bailbe D., Gorshkova I., Natarajan V., Portha B., Le Stunff H. Ceramide synthase 4 and de novo production of ceramides with specific N-acyl chain lengths are involved in glucolipotoxicity-induced apoptosis of INS-1 beta-cells. Biochem. J. 2011;438:177–189. doi: 10.1042/BJ20101386. PubMed DOI
Nikolova-Karakashian M.N., Rozenova K.A. Ceramide in Stress Response. In: Chalfant C., Del Poeta M., editors. Sphingolipids as Signaling and Regulatory Molecules. Volume 688. Springer; Berlin, Germany: 2010. pp. 86–108. PubMed PMC
Stratford S., Hoehn K.L., Liu F., Summers S.A. Regulation of insulin action by ceramide: Dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. J. Biol. Chem. 2004;279:36608–36615. doi: 10.1074/jbc.M406499200. PubMed DOI
Blouin C.M., Prado C., Takane K.K., Lasnier F., Garcia-Ocana A., Ferre P., Dugail I., Hajduch E. Plasma membrane subdomain compartmentalization contributes to distinct mechanisms of ceramide action on insulin signaling. Diabetes. 2010;59:600–610. doi: 10.2337/db09-0897. PubMed DOI PMC
Morales A., Lee H., Goni F.M., Kolesnick R., Fernandez-Checa J.C. Sphingolipids and cell death. Apoptosis. 2007;12:923–939. doi: 10.1007/s10495-007-0721-0. PubMed DOI
Nemcova-Furstova V., Balusikova K., Sramek J., James R.F., Kovar J. Caspase-2 and JNK activated by saturated fatty acids are not involved in apoptosis induction but modulate ER stress in human pancreatic beta-cells. Cell. Physiol. Biochem. 2013;31:277–289. doi: 10.1159/000343367. PubMed DOI
Sramek J., Nemcova-Furstova V., Pavlikova N., Kovar J. Effect of Saturated Stearic Acid on MAP Kinase and ER Stress Signaling Pathways during Apoptosis Induction in Human Pancreatic beta-Cells Is Inhibited by Unsaturated Oleic Acid. Int. J. Mol. Sci. 2017;18:2313. doi: 10.3390/ijms18112313. PubMed DOI PMC
Lang F., Ullrich S., Gulbins E. Ceramide formation as a target in beta-cell survival and function. Expert Opin. Ther. Targets. 2011;15:1061–1071. doi: 10.1517/14728222.2011.588209. PubMed DOI
Seshacharyulu P., Pandey P., Datta K., Batra S.K. Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett. 2013;335:9–18. doi: 10.1016/j.canlet.2013.02.036. PubMed DOI PMC
Thevissen K., Francois I.E., Winderickx J., Pannecouque C., Cammue B.P. Ceramide involvement in apoptosis and apoptotic diseases. Mini. Rev. Med. Chem. 2006;6:699–709. doi: 10.2174/138955706777435643. PubMed DOI
Karnovsky M.J., Kleinfeld A.M., Hoover R.L., Klausner R.D. The concept of lipid domains in membranes. J. Cell Biol. 1982;94:1–6. doi: 10.1083/jcb.94.1.1. PubMed DOI PMC
Maulucci G., Cohen O., Daniel B., Sansone A., Petropoulou P.I., Filou S., Spyridonidis A., Pani G., De Spirito M., Chatgilialoglu C., et al. Fatty acid-related modulations of membrane fluidity in cells: Detection and implications. Free Radic. Res. 2016;50:S40–S50. doi: 10.1080/10715762.2016.1231403. PubMed DOI
Yang X., Sheng W., Sun G.Y., Lee J.C. Effects of fatty acid unsaturation numbers on membrane fluidity and alpha-secretase-dependent amyloid precursor protein processing. Neurochem. Int. 2011;58:321–329. doi: 10.1016/j.neuint.2010.12.004. PubMed DOI PMC
Pilon M. Revisiting the membrane-centric view of diabetes. Lipids Health Dis. 2016;15:1–6. doi: 10.1186/s12944-016-0342-0. PubMed DOI PMC
Mamedova L.K., Yuan K., Laudick A.N., Fleming S.D., Mashek D.G., Bradford B.J. Toll-like receptor 4 signaling is required for induction of gluconeogenic gene expression by palmitate in human hepatic carcinoma cells. J. Nutr. Biochem. 2013;24:1499–1507. doi: 10.1016/j.jnutbio.2012.12.009. PubMed DOI PMC
Fang Q.L., Zou C.P., Zhong P., Lin F., Li W.X., Wang L.T., Zhang Y.L., Zheng C., Wang Y., Li X.K., et al. EGFR mediates hyperlipidemia-induced renal injury via regulating inflammation and oxidative stress: The detrimental role and mechanism of EGFR activation. Oncotarget. 2016;7:24361–24373. doi: 10.18632/oncotarget.8222. PubMed DOI PMC
Vacaresse N., Lajoie-Mazenc I., Auge N., Suc I., Frisach M.F., Salvayre R., Negre-Salvayre A. Activation of epithelial growth factor receptor pathway by unsaturated fatty acids. Circ. Res. 1999;85:892–899. doi: 10.1161/01.RES.85.10.892. PubMed DOI
Chen B.E., Sun Y., Niu J.X., Jarugumilli G.K., Wu X. Protein Lipidation in Cell Signaling and Diseases: Function, Regulation, and Therapeutic Opportunities. Cell Chem. Biol. 2018;25:817–831. doi: 10.1016/j.chembiol.2018.05.003. PubMed DOI PMC
Holzer R.G., Park E.J., Li N., Tran H., Chen M., Choi C., Solinas G., Karin M. Saturated fatty acids induce c-Src clustering within membrane subdomains, leading to JNK activation. Cell. 2011;147:173–184. doi: 10.1016/j.cell.2011.08.034. PubMed DOI PMC
Manning B.D., Cantley L.C. AKT/PKB signaling: Navigating downstream. Cell. 2007;129:1261–1274. doi: 10.1016/j.cell.2007.06.009. PubMed DOI PMC
Li X.J., Guo Q.H., Wang X., Xue B., Sun L.Q., Meng Q.T., Lu J.M., Mu Y.M. LRP16 gene protects mouse insulinoma MIN6 cells against fatty acid-induced apoptosis through Akt/FoxO1 signaling. Chin. Med. J. 2012;125:1695–1702. PubMed
Quan X., Zhang L., Li Y., Liang C. TCF2 attenuates FFA-induced damage in islet beta-cells by regulating production of insulin and ROS. Int. J. Mol. Sci. 2014;15:13317–13332. doi: 10.3390/ijms150813317. PubMed DOI PMC
Shao S., Nie M., Chen C., Chen X., Zhang M., Yuan G., Yu X., Yang Y. Protective action of liraglutide in beta cells under lipotoxic stress via PI3K/Akt/FoxO1 pathway. J. Cell. Biochem. 2014;115:1166–1175. doi: 10.1002/jcb.24763. PubMed DOI
Hao F., Kang J., Cao Y., Fan S., Yang H., An Y., Pan Y., Tie L., Li X. Curcumin attenuates palmitate-induced apoptosis in MIN6 pancreatic beta-cells through PI3K/Akt/FoxO1 and mitochondrial survival pathways. Apoptosis. 2015;20:1420–1432. doi: 10.1007/s10495-015-1150-0. PubMed DOI
Natalicchio A., Marrano N., Biondi G., Spagnuolo R., Labarbuta R., Porreca I., Cignarelli A., Bugliani M., Marchetti P., Perrini S., et al. The Myokine Irisin Is Released in Response to Saturated Fatty Acids and Promotes Pancreatic beta-Cell Survival and Insulin Secretion. Diabetes. 2017;66:2849–2856. doi: 10.2337/db17-0002. PubMed DOI
Litwak S.A., Wali J.A., Pappas E.G., Saadi H., Stanley W.J., Varanasi L.C., Kay T.W.H., Thomas H.E., Gurzov E.N. Lipotoxic Stress Induces Pancreatic beta-Cell Apoptosis through Modulation of Bcl-2 Proteins by the Ubiquitin-Proteasome System. J. Diabetes Res. 2015;2015 doi: 10.1155/2015/280615. PubMed DOI PMC
Cunha D.A., Gurzov E.N., Naamane N., Ortis F., Cardozo A.K., Bugliani M., Marchetti P., Eizirik D.L., Cnop M. JunB protects beta-cells from lipotoxicity via the XBP1-AKT pathway. Cell Death Differ. 2014;21:1313–1324. doi: 10.1038/cdd.2014.53. PubMed DOI PMC
Buteau J., El-Assaad W., Rhodes C.J., Rosenberg L., Joly E., Prentki M. Glucagon-like peptide-1 prevents beta cell glucolipotoxicity. Diabetologia. 2004;47:806–815. PubMed
Tuttle R.L., Gill N.S., Pugh W., Lee J.P., Koeberlein B., Furth E.E., Polonsky K.S., Naji A., Birnbaum M.J. Regulation of pancreatic beta-cell growth and survival by the serine/threonine protein kinase Akt1/PKB alpha. Nat. Med. 2001;7:1133–1137. doi: 10.1038/nm1001-1133. PubMed DOI
Bernal-Mizrachi E., Fatrai S., Johnson J.D., Ohsugi M., Otani K., Han Z.Q., Polonsky K.S., Permutt M.A. Defective insulin secretion and increased susceptibility to experimental diabetes are induced by reduced Akt activity in pancreatic islet beta cells. J. Clin. Investig. 2004;114:928–936. doi: 10.1172/JCI200420016. PubMed DOI PMC
Widenmaier S.B., Ao Z.L., Kim S.J., Warnock G., McIntosh C.H.S. Suppression of p38 MAPK and JNK via Akt-mediated Inhibition of Apoptosis Signal-regulating Kinase 1 Constitutes a Core Component of the beta-Cell Pro-survival Effects of Glucose-dependent Insulinotropic Polypeptide. J. Biol. Chem. 2009;284:30372–30382. doi: 10.1074/jbc.M109.060178. PubMed DOI PMC
Aikin R., Maysinger D., Rosenberg L. Cross-talk between phosphatidylinositol 3-kinase/AKT and c-Jun NH2-terminal kinase mediates survival of isolated human islets. Endocrinology. 2004;145:4522–4531. doi: 10.1210/en.2004-0488. PubMed DOI
Zhang X.B., Tang N.M., Hadden T.J., Rishi A.K. Akt, FoxO and regulation of apoptosis. Biochim. Biophys. Acta Mol. Cell Res. 2011;1813:1978–1986. doi: 10.1016/j.bbamcr.2011.03.010. PubMed DOI
Kitamura T., Kitamura Y.I. Role of FoxO proteins in pancreatic beta cells. Endocr. J. 2007;54:507–515. doi: 10.1507/endocrj.KR-109. PubMed DOI
Kitamura T., Nakae J., Kitamura Y., Kido Y., Biggs W.H., Wright C.V.E., White M.F., Arden K.C., Accili D. The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. J. Clin. Investig. 2002;110:1839–1847. doi: 10.1172/JCI200216857. PubMed DOI PMC
Huang H., Tindall J.T. FOXO factors: A matter of life and death. Future Oncol. 2006;2:83–89. doi: 10.2217/14796694.2.1.83. PubMed DOI
Wang W., Liu Y., Chen Y., Cao C., Xiang Y., Zhang D., Han L., Zhao H., Liu G. Inhibition of Foxo1 mediates protective effects of ghrelin against lipotoxicity in MIN6 pancreatic beta-cells. Peptides. 2010;31:307–314. doi: 10.1016/j.peptides.2009.11.011. PubMed DOI
Yuan H., Zhang X., Huang X., Lu Y., Tang W., Man Y., Wang S., Xi J., Li J. NADPH oxidase 2-derived reactive oxygen species mediate FFAs-induced dysfunction and apoptosis of beta-cells via JNK, p38 MAPK and p53 pathways. PLoS ONE. 2010;5:e15726. doi: 10.1371/journal.pone.0015726. PubMed DOI PMC
Yin Y., Yong W., Yu J., Zhang X., Lin H., Zhu Y., Han X. Pdcd2l Promotes Palmitate-Induced Pancreatic Beta-Cell Apoptosis as a FoxO1 Target Gene. PLoS ONE. 2016;11:e0166692. doi: 10.1371/journal.pone.0166692. PubMed DOI PMC
Kim S.J., Winter K., Nian C., Tsuneoka M., Koda Y., McIntosh C.H. Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic beta-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regulation of bax expression. J. Biol. Chem. 2005;280:22297–22307. PubMed
Martinez S.C., Tanabe K., Cras-Meneur C., Abumrad N.A., Bernal-Mizrachi E., Permutt M.A. Inhibition of Foxo1 protects pancreatic islet beta-cells against fatty acid and endoplasmic reticulum stress-induced apoptosis. Diabetes. 2008;57:846–859. doi: 10.2337/db07-0595. PubMed DOI
Cunha D.A., Igoillo-Esteve M., Gurzov E.N., Germano C.M., Naamane N., Marhfour I., Fukaya M., Vanderwinden J.M., Gysemans C., Mathieu C., et al. Death Protein 5 and p53-Upregulated Modulator of Apoptosis Mediate the Endoplasmic Reticulum Stress-Mitochondrial Dialog Triggering Lipotoxic Rodent and Human beta-Cell Apoptosis. Diabetes. 2012;61:2763–2775. doi: 10.2337/db12-0123. PubMed DOI PMC
Wrede C.E., Dickson L.M., Lingohr M.K., Briaud I., Rhodes C.J. Fatty acid and phorbol ester-mediated interference of mitogenic signaling via novel protein kinase C isoforms in pancreatic beta-cells (INS-1) J. Mol. Endocrinol. 2003;30:271–286. doi: 10.1677/jme.0.0300271. PubMed DOI
Zhang Y., Xu M., Zhang S., Yan L., Yang C., Lu W., Li Y., Cheng H. The role of G protein-coupled receptor 40 in lipoapoptosis in mouse beta-cell line NIT-1. J. Mol. Endocrinol. 2007;38:651–661. doi: 10.1677/JME-06-0048. PubMed DOI
Simon M.N., Azevedo-Martins A.K., Amanso A.M., Carvalho C.R.O., Curi R. Persistent activation of Akt or ERK prevents the toxicity induced by saturated and polyunsaturated fatty acids in RINm5F beta-cells. Toxicol. Vitr. 2008;22:1018–1024. doi: 10.1016/j.tiv.2008.02.012. PubMed DOI
Chang F., Steelman L.S., Lee J.T., Shelton J.G., Navolanic P.M., Blalock W.L., Franklin R.A., McCubrey J.A. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: Potential targeting for therapeutic intervention. Leukemia. 2003;17:1263–1293. doi: 10.1038/sj.leu.2402945. PubMed DOI
Roskoski R., Jr. ERK1/2 MAP kinases: Structure, function, and regulation. Pharm. Res. 2012;66:105–143. doi: 10.1016/j.phrs.2012.04.005. PubMed DOI
Panse M., Gerst F., Kaiser G., Teutsch C.A., Dolker R., Wagner R., Haring H.U., Ullrich S. Activation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) by free fatty acid receptor 1 (FFAR1/GPR40) protects from palmitate-induced beta cell death, but plays no role in insulin secretion. Cell. Physiol. Biochem. 2015;35:1537–1545. doi: 10.1159/000373969. PubMed DOI
Abaraviciene S.M., Lundquist I., Salehi A. Rosiglitazone counteracts palmitate-induced beta-cell dysfunction by suppression of MAP kinase, inducible nitric oxide synthase and caspase 3 activities. Cell. Mol. Life Sci. 2008;65:2256–2265. doi: 10.1007/s00018-008-8100-8. PubMed DOI PMC
Fontes G., Semache M., Hagman D.K., Tremblay C., Shah R., Rhodes C.J., Rutter J., Poitout V. Involvement of Per-Arnt-Sim Kinase and Extracellular-Regulated Kinases-1/2 in Palmitate Inhibition of Insulin Gene Expression in Pancreatic beta-Cells. Diabetes. 2009;58:2048–2058. doi: 10.2337/db08-0579. PubMed DOI PMC
Plaisance V., Perret V., Favre D., Abderrahmani A., Yang J.Y., Widmann C., Regazzi R. Role of the transcriptional factor C/EBPbeta in free fatty acid-elicited beta-cell failure. Mol. Cell. Endocrinol. 2009;305:47–55. doi: 10.1016/j.mce.2008.12.005. PubMed DOI
Guo J., Qian Y., Xi X., Hu X., Zhu J., Han X. Blockage of ceramide metabolism exacerbates palmitate inhibition of pro-insulin gene expression in pancreatic beta-cells. Mol. Cell. Biochem. 2010;338:283–290. doi: 10.1007/s11010-009-0362-4. PubMed DOI
Watson M.L., Macrae K., Marley A.E., Hundal H.S. Chronic effects of palmitate overload on nutrient-induced insulin secretion and autocrine signalling in pancreatic MIN6 beta cells. PLoS ONE. 2011;6:e25975. doi: 10.1371/journal.pone.0025975. PubMed DOI PMC
Liu L., Liang C., Mei P.C., Zhu H., Hou M.L., Yu C.L., Song Z.B., Bao Y.L., Huang Y.X., Yi J.W., et al. Dracorhodin perchlorate protects pancreatic beta-cells against glucotoxicity- or lipotoxicity-induced dysfunction and apoptosis in vitro and in vivo. FEBS J. 2019;286:3718–3736. doi: 10.1111/febs.15020. PubMed DOI
Sramek J., Nemcova-Furstova V., Kovar J. Kinase Signaling in Apoptosis Induced by Saturated Fatty Acids in Pancreatic beta-Cells. Int. J. Mol. Sci. 2016;17:1400. doi: 10.3390/ijms17091400. PubMed DOI PMC
Morgan N.G., Dhayal S., Diakogiannaki E., Welters H.J. The cytoprotective actions of long-chain mono-unsaturated fatty acids in pancreatic beta-cells. Biochem. Soc. Trans. 2008;36:905–908. doi: 10.1042/BST0360905. PubMed DOI
Cagnol S., Chambard J.C. ERK and cell death: Mechanisms of ERK-induced cell death—Apoptosis, autophagy and senescence. FEBS J. 2010;277:2–21. doi: 10.1111/j.1742-4658.2009.07366.x. PubMed DOI
Lu Z., Xu S. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life. 2006;58:621–631. doi: 10.1080/15216540600957438. PubMed DOI
Lavallard V.J., Meijer A.J., Codogno P., Gual P. Autophagy, signaling and obesity. Pharm. Res. 2012;66:513–525. doi: 10.1016/j.phrs.2012.09.003. PubMed DOI
Zarubin T., Han J.H. Activation and signaling of the p38 MAP kinase pathway. Cell Res. 2005;15:11–18. doi: 10.1038/sj.cr.7290257. PubMed DOI
Cvjeticanin T., Stojanovic I., Timotijevic G., Stosic-Grujicic S., Miljkovic D. T cells cooperate with palmitic acid in induction of beta cell apoptosis. BMC Immunol. 2009;10:29. doi: 10.1186/1471-2172-10-29. PubMed DOI PMC
Natalicchio A., Labarbuta R., Tortosa F., Biondi G., Marrano N., Peschechera A., Carchia E., Orlando M.R., Leonardini A., Cignarelli A., et al. Exendin-4 protects pancreatic beta cells from palmitate-induced apoptosis by interfering with GPR40 and the MKK4/7 stress kinase signalling pathway. Diabetologia. 2013;56:2456–2466. doi: 10.1007/s00125-013-3028-4. PubMed DOI
Wang Y., Xie T., Zhang D., Leung P.S. GPR120 protects lipotoxicity- induced pancreatic beta-cell dysfunction through regulation of PDX1 expression and inhibition of islet inflammation. Clin. Sci. 2019;133:101–116. doi: 10.1042/CS20180836. PubMed DOI
Zhou L., Cai X., Han X., Ji L. P38 plays an important role in glucolipotoxicity-induced apoptosis in INS-1 cells. J. Diabetes Res. 2014;2014:834528. doi: 10.1155/2014/834528. PubMed DOI PMC
Wei X., Gu N., Feng N., Guo X., Ma X. Inhibition of p38 mitogen-activated protein kinase exerts a hypoglycemic effect by improving beta cell function via inhibition of beta cell apoptosis in db/db mice. J. Enzym. Inhib. Med. Chem. 2018;33:1494–1500. doi: 10.1080/14756366.2018.1477138. PubMed DOI PMC
Flores-Lopez L.A., Diaz-Flores M., Garcia-Macedo R., Avalos-Rodriguez A., Vergara-Onofre M., Cruz M., Contreras-Ramos A., Konigsberg M., Ortega-Camarillo C. High glucose induces mitochondrial p53 phosphorylation by p38 MAPK in pancreatic RINm5F cells. Mol. Biol. Rep. 2013;40:4947–4958. doi: 10.1007/s11033-013-2595-2. PubMed DOI
Kikkawa U., Matsuzaki H., Yamamoto T. Protein kinase C delta (PKC delta): Activation mechanisms and functions. J. Biochem. 2002;132:831–839. doi: 10.1093/oxfordjournals.jbchem.a003294. PubMed DOI
Qin J., Fang N., Lou J.N., Zhang W.J., Xu S.Q., Liu H.L., Fang Q., Wang Z., Liu J., Men X.L., et al. TRB3 Is Involved in Free Fatty Acid-Induced INS-1-Derived Cell Apoptosis via the Protein Kinase C delta Pathway. PLoS ONE. 2014;9:e96089. PubMed PMC
Welters H.J., Smith S.A., Tadayyon M., Scarpello J.H.B., Morgan N.G. Evidence that protein kinase C delta is not required for palmitate-induced cytotoxicity in BRIN-BD11 beta-cells. J. Mol. Endocrinol. 2004;32:227–235. doi: 10.1677/jme.0.0320227. PubMed DOI
Reyland M.E. Protein kinase C delta and apoptosis. Biochem. Soc. Trans. 2007;35:1001–1004. doi: 10.1042/BST0351001. PubMed DOI
Hetz C., Martinon F., Rodriguez D., Glimcher L.H. The unfolded protein response: Integrating stress signals through the stress sensor IRE1alpha. Physiol. Rev. 2011;91:1219–1243. doi: 10.1152/physrev.00001.2011. PubMed DOI
Tabas I., Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 2011;13:184–190. doi: 10.1038/ncb0311-184. PubMed DOI PMC
De la Cadena S.G., Massieu L. Caspases and their role in inflammation and ischemic neuronal death. Focus on caspase-12. Apoptosis. 2016;21:763–777. doi: 10.1007/s10495-016-1247-0. PubMed DOI
Huang C.J., Lin C.Y., Haataja L., Gurlo T., Butler A.E., Rizza R.A., Butler P.C. High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress-mediated beta-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes. 2007;56:2016–2027. doi: 10.2337/db07-0197. PubMed DOI
Sharma R.B., Snyder J.T., Alonso L.C. Atf6 alpha impacts cell number by influencing survival, death and proliferation. Mol. Metab. 2019;27:S69–S80. doi: 10.1016/j.molmet.2019.06.005. PubMed DOI PMC
Martino L., Masini M., Novelli M., Beffy P., Bugliani M., Marselli L., Masiello P., Marchetti P., De Tata V. Palmitate activates autophagy in INS-1E beta-cells and in isolated rat and human pancreatic islets. PLoS ONE. 2012;7:e36188. doi: 10.1371/journal.pone.0036188. PubMed DOI PMC
Acosta-Montano P., Rodriguez-Velazquez E., Ibarra-Lopez E., Frayde-Gomez H., Mas-Oliva J., Delgado-Coello B., Rivero I.A., Alatorre-Meda M., Aguilera J., Guevara-Olaya L., et al. Fatty Acid and Lipopolysaccharide Effect on Beta Cells Proteostasis and its Impact on Insulin Secretion. Cells. 2019;8:884. doi: 10.3390/cells8080884. PubMed DOI PMC
Cunha D.A., Ladriere L., Ortis F., Igoillo-Esteve M., Gurzov E.N., Lupi R., Marchetti P., Eizirik D.L., Cnop M. Glucagon-like peptide-1 agonists protect pancreatic beta-cells from lipotoxic endoplasmic reticulum stress through upregulation of BiP and JunB. Diabetes. 2009;58:2851–2862. doi: 10.2337/db09-0685. PubMed DOI PMC
Bachar E., Ariav Y., Ketzinel-Gilad M., Cerasi E., Kaiser N., Leibowitz G. Glucose amplifies fatty acid-induced endoplasmic reticulum stress in pancreatic beta-cells via activation of mTORC1. PLoS ONE. 2009;4:e4954. doi: 10.1371/journal.pone.0004954. PubMed DOI PMC
Chen J.Q., Fontes G., Saxena G., Poitout V., Shalev A. Lack of TXNIP Protects Against Mitochondria-Mediated Apoptosis but Not Against Fatty Acid-Induced ER Stress-Mediated beta-Cell Death. Diabetes. 2010;59:440–447. doi: 10.2337/db09-0949. PubMed DOI PMC
Gwiazda K.S., Yang T.L., Lin Y., Johnson J.D. Effects of palmitate on ER and cytosolic Ca2+ homeostasis in beta-cells. Am. J. Physiol. Endocrinol. Metab. 2009;296:E690–E701. doi: 10.1152/ajpendo.90525.2008. PubMed DOI
Sargsyan E., Sol E.R.M., Bergsten P. UPR in palmitate-treated pancreatic beta-cells is not affected by altering oxidation of the fatty acid. Nutr. Metab. 2011;8:8. doi: 10.1186/1743-7075-8-70. PubMed DOI PMC
Abdulkarim B., Hernangomez M., Igoillo-Esteve M., Cunha D.A., Marselli L., Marchetti P., Ladriere L., Cnop M. Guanabenz Sensitizes Pancreatic beta Cells to Lipotoxic Endoplasmic Reticulum Stress and Apoptosis. Endocrinology. 2017;158:1659–1670. doi: 10.1210/en.2016-1773. PubMed DOI
Jiang D., Wan F. Exendin-4 protects INS-1 cells against palmitate-induced apoptosis through the IRE1alpha-Xbp1 signaling pathway. Exp. Med. 2018;16:1029–1035. PubMed PMC
Allagnat F., Cunha D., Moore F., Vanderwinden J.M., Eizirik D.L., Cardozo A.K. Mcl-1 downregulation by pro-inflammatory cytokines and palmitate is an early event contributing to beta-cell apoptosis. Cell Death. Differ. 2011;18:328–337. doi: 10.1038/cdd.2010.105. PubMed DOI PMC
Lu H.M., Hao L.Y., Li S.T., Lin S., Lv L., Chen Y., Cui H.L., Zi T.Q., Chu X., Na L.X., et al. Elevated circulating stearic acid leads to a major lipotoxic effect on mouse pancreatic beta cells in hyperlipidaemia via a miR-34a-5p-mediated PERK/p53-dependent pathway. Diabetologia. 2016;59:1247–1257. doi: 10.1007/s00125-016-3900-0. PubMed DOI
Kong F.J., Wu J.H., Sun S.Y., Zhou J.Q. The endoplasmic reticulum stress/autophagy pathway is involved in cholesterol-induced pancreatic beta-cell injury. Sci. Rep. 2017;7:44746. doi: 10.1038/srep44746. PubMed DOI PMC
Bugliani M., Mossuto S., Grano F., Suleiman M., Marselli L., Boggi U., De Simone P., Eizirik D.L., Cnop M., Marchetti P., et al. Modulation of Autophagy Influences the Function and Survival of Human Pancreatic Beta Cells Under Endoplasmic Reticulum Stress Conditions and in Type 2 Diabetes. Front. Endocrinol. 2019;10:10. doi: 10.3389/fendo.2019.00052. PubMed DOI PMC
Ishigaki S., Fonseca S.G., Oslowski C.M., Jurczyk A., Shearstone J.R., Zhu L.J., Permutt M.A., Greiner D.L., Bortell R., Urano F. AATF mediates an antiapoptotic effect of the unfolded protein response through transcriptional regulation of AKT1. Cell Death Differ. 2010;17:774–786. doi: 10.1038/cdd.2009.175. PubMed DOI PMC
Allagnat F., Christulia F., Ortis F., Pirot P., Lortz S., Lenzen S., Eizirik D.L., Cardozo A.K. Sustained production of spliced X-box binding protein 1 (XBP1) induces pancreatic beta cell dysfunction and apoptosis. Diabetologia. 2010;53:1120–1130. doi: 10.1007/s00125-010-1699-7. PubMed DOI
Miani M., Colli M.L., Ladriere L., Cnop M., Eizirik D.L. Mild endoplasmic reticulum st XBP1) induces pancreatic beta cell dysfunction ress augments the proinflammatory effect of IL-1beta in pancreatic rat beta-cells via the IRE1alpha/XBP1s pathway. Endocrinology. 2012;153:3017–3028. doi: 10.1210/en.2011-2090. PubMed DOI
Biden T.J., Boslem E., Chu K.Y., Sue N. Lipotoxic endoplasmic reticulum stress, beta cell failure, and type 2 diabetes mellitus. Trends Endocrinol. Metab. 2014;25:389–398. doi: 10.1016/j.tem.2014.02.003. PubMed DOI
Chan J.Y., Luzuriaga J., Maxwell E.L., West P.K., Bensellam M., Laybutt D.R. The balance between adaptive and apoptotic unfolded protein responses regulates beta-cell death under ER stress conditions through XBP1, CHOP and JNK. Mol. Cell. Endocrinol. 2015;413:189–201. doi: 10.1016/j.mce.2015.06.025. PubMed DOI
Kim I.R., Murakami K., Chen N.J., Saibil S.D., Matysiak-Zablocki E., Elford A.R., Bonnard M., Benchimol S., Jurisicova A., Yeh W.C., et al. DNA damage- and stress-induced apoptosis occurs independently of PIDD. Apoptosis. 2009;14:1039–1049. doi: 10.1007/s10495-009-0375-1. PubMed DOI
Oh Y.S., Lee Y.J., Kang Y., Han J., Lim O.K., Jun H.S. Exendin-4 inhibits glucolipotoxic ER stress in pancreatic beta cells via regulation of SREBP1c and C/EBP beta transcription factors. J. Endocrinol. 2013;216:343–352. doi: 10.1530/JOE-12-0311. PubMed DOI
Lee J.H., Jung I.R., Choi S.E., Lee S.M., Lee S.J., Han S.J., Kim H.J., Kim D.J., Lee K.W., Karig Y. Toxicity generated through inhibition of pyruvate carboxylase and carnitine palmitoyl transferase-1 is similar to high glucose/palmitate-induced glucolipotoxicity in INS-1 beta cells. Mol. Cell. Endocrinol. 2014;383:48–59. doi: 10.1016/j.mce.2013.12.002. PubMed DOI
Kitahara A., Takahashi K., Morita N., Murashima T., Onuma H., Sumitani Y., Tanaka T., Kondo T., Hosaka T., Ishida H. The Novel Mechanisms Concerning the Inhibitions of Palmitate-Induced Proinflammatory Factor Releases and Endogenous Cellular Stress with Astaxanthin on MIN6-Cells. Mar. Drugs. 2017;15:16. PubMed PMC
Prause M., Christensen D.P., Billestrup N., Mandrup-Poulsen T. JNK1 Protects against Glucolipotoxicity-Mediated Beta-Cell Apoptosis. PLoS ONE. 2014;9:e87067. doi: 10.1371/journal.pone.0087067. PubMed DOI PMC
Komiya K., Uchida T., Ueno T., Koike M., Abe H., Hirose T., Kawamori R., Uchiyama Y., Kominami E., Fujitani Y., et al. Free fatty acids stimulate autophagy in pancreatic beta-cells via JNK pathway. Biochem. Biophys. Res. Commun. 2010;401:561–567. doi: 10.1016/j.bbrc.2010.09.101. PubMed DOI
Lanuza-Masdeu J., Arevalo M.I., Vila C., Barbera A., Gomis R., Caelles C. In vivo JNK activation in pancreatic beta-cells leads to glucose intolerance caused by insulin resistance in pancreas. Diabetes. 2013;62:2308–2317. doi: 10.2337/db12-1097. PubMed DOI PMC
Kim W.H., Lee J.W., Gao B., Jung M.H. Synergistic activation of JNK/SAPK induced by TNF-alpha and IFN-gamma: Apoptosis of pancreatic beta-cells via the p53 and ROS pathway. Cell. Signal. 2005;17:1516–1532. doi: 10.1016/j.cellsig.2005.03.020. PubMed DOI
Lee S.M., Choi S.E., Lee J.H., Lee J.J., Jung I.R., Lee S.J., Lee K.W., Kang Y. Involvement of the TLR4 (Toll-like receptor4) signaling pathway in palmitate-induced INS-1 beta cell death. Mol. Cell. Biochem. 2011;354:207–217. doi: 10.1007/s11010-011-0820-7. PubMed DOI
Sramek J., Nemcova-Furstova V., Polak J., Kovar J. Hypoxia Modulates Effects of Fatty Acids on NES2Y Human Pancreatic beta-cells. Int. J. Mol. Sci. 2019;20:3441. doi: 10.3390/ijms20143441. PubMed DOI PMC
Cui W., Ma J., Wang X., Yang W., Zhang J., Ji Q. Free fatty acid induces endoplasmic reticulum stress and apoptosis of beta-cells by Ca2+/calpain-2 pathways. PLoS ONE. 2013;8:e59921. PubMed PMC
Teodoro T., Odisho T., Sidorova E., Volchuk A. Pancreatic beta-cells depend on basal expression of active ATF6alpha-p50 for cell survival even under nonstress conditions. Am. J. Physiol. Cell Physiol. 2012;302:C992–C1003. doi: 10.1152/ajpcell.00160.2011. PubMed DOI
Engin F., Yermalovich A., Nguyen T., Hummasti S., Fu W., Eizirik D.L., Mathis D., Hotamisligil G.S. Restoration of the unfolded protein response in pancreatic beta cells protects mice against type 1 diabetes. Sci. Transl. Med. 2013;5:211ra156. doi: 10.1126/scitranslmed.3006534. PubMed DOI PMC
Ahowesso C., Black P.N., Saini N., Montefusco D., Chekal J., Malosh C., Lindsley C.W., Stauffer S.R., DiRusso C.C. Chemical inhibition of fatty acid absorption and cellular uptake limits lipotoxic cell death. Biochem. Pharm. 2015;98:167–181. doi: 10.1016/j.bcp.2015.09.004. PubMed DOI PMC
Ning B., Bai M.J., Shen W. Reduced Glutathione Protects Human Hepatocytes from Palmitate-Mediated Injury by Suppressing Endoplasmic Reticulum Stress Response. Hepato Gastroenterol. 2011;58:1670–1679. doi: 10.5754/hge10845. PubMed DOI
Kim K., Chung M.H., Park S., Cha J., Baek J.H., Lee S.Y., Choi S.Y. ER stress attenuation by Aloe-derived polysaccharides in the protection of pancreatic beta-cells from free fatty acid-induced lipotoxicity. Biochem. Biophys. Res. Commun. 2018;500:797–803. doi: 10.1016/j.bbrc.2018.04.162. PubMed DOI
Song B., Scheuner D., Ron D., Pennathur S., Kaufman R.J. Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. J. Clin. Investig. 2008;118:3378–3389. doi: 10.1172/JCI34587. PubMed DOI PMC
Eizirik D.L., Cardozo A.K., Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr. Rev. 2008;29:42–61. doi: 10.1210/er.2007-0015. PubMed DOI
McCullough K.D., Martindale J.L., Klotz L.O., Aw T.Y., Holbrook N.J. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol. Cell. Biol. 2001;21:1249–1259. doi: 10.1128/MCB.21.4.1249-1259.2001. PubMed DOI PMC
Li Y., Guo Y., Tang J., Jiang J., Chen Z. New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim. Biophys. Sin. 2014;46:629–640. doi: 10.1093/abbs/gmu048. PubMed DOI
Mihailidou C., Papavassiliou A.G., Kiaris H. A crosstalk between p21 and UPR-induced transcription factor C/EBP homologous protein (CHOP) linked to type 2 diabetes. Biochimie. 2014;99:19–27. doi: 10.1016/j.biochi.2013.11.003. PubMed DOI
Wali J.A., Rondas D., McKenzie M.D., Zhao Y., Elkerbout L., Fynch S., Gurzov E.N., Akira S., Mathieu C., Kay T.W.H., et al. The proapoptotic BH3-only proteins Bim and Puma are downstream of endoplasmic reticulum and mitochondrial oxidative stress in pancreatic islets in response to glucotoxicity. Cell Death Dis. 2014;5:9. doi: 10.1038/cddis.2014.88. PubMed DOI PMC
Periyasamy-Thandavan S., Jiang M., Schoenlein P., Dong Z. Autophagy: Molecular machinery, regulation, and implications for renal pathophysiology. Am. J. Physiol. Ren. Physiol. 2009;297:F244–F256. doi: 10.1152/ajprenal.00033.2009. PubMed DOI PMC
Iurlaro R., Munoz-Pinedo C. Cell death induced by endoplasmic reticulum stress. FEBS J. 2016;283:2640–2652. doi: 10.1111/febs.13598. PubMed DOI
Yin J.J., Li Y.B., Wang Y., Liu G.D., Wang J., Zhu X.O., Pan S.H. The role of autophagy in endoplasmic reticulum stress-induced pancreatic beta cell death. Autophagy. 2012;8:158–164. doi: 10.4161/auto.8.2.18807. PubMed DOI
Magnuson B., Ekim B., Fingar D.C. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem. J. 2012;441:1–21. doi: 10.1042/BJ20110892. PubMed DOI
Qi Z.H., Chen L.X. Endoplasmic Reticulum Stress and Autophagy. In: Qin Z.H., editor. Autophagy: Biology and Diseases: Basic Science. Volume 1206. Springer; Berlin, Germany: 2019. pp. 167–177. PubMed
Yuan T., Lupse B., Maedler K., Ardestani A. mTORC2 Signaling: A Path for Pancreatic beta Cell’s Growth and Function. J. Mol. Biol. 2018;430:904–918. doi: 10.1016/j.jmb.2018.02.013. PubMed DOI
Song S.L., Tan J., Miao Y.Y., Zhang Q. Crosstalk of ER stress-mediated autophagy and ER-phagy: Involvement of UPR and the core autophagy machinery. J. Cell. Physiol. 2018;233:3867–3874. doi: 10.1002/jcp.26137. PubMed DOI
Hatanaka M., Maier B., Sims E.K., Templin A.T., Kulkarni R.N., Evans-Molina C., Mirmira R.G. Palmitate Induces mRNA Translation and Increases ER Protein Load in Islet beta-Cells via Activation of the Mammalian Target of Rapamycin Pathway. Diabetes. 2014;63:3404–3415. doi: 10.2337/db14-0105. PubMed DOI PMC
Mir S.U., George N.M., Zahoor L., Harms R., Guinn Z., Sarvetnick N.E. Inhibition of autophagic turnover in beta-cells by fatty acids and glucose leads to apoptotic cell death. J. Biol. Chem. 2015;290:6071–6085. doi: 10.1074/jbc.M114.605345. PubMed DOI PMC
Choi S.E., Lee S.M., Lee Y.J., Li L.J., Lee S.J., Lee J.H., Kim Y., Jun H.S., Lee K.W., Kang Y. Protective role of autophagy in palmitate-induced INS-1 beta-cell death. Endocrinology. 2009;150:126–134. doi: 10.1210/en.2008-0483. PubMed DOI
Ebato C., Uchida T., Arakawa M., Komatsu M., Ueno T., Komiya K., Azuma K., Hirose T., Tanaka K., Kominami E., et al. Autophagy Is Important in Islet Homeostasis and Compensatory Increase of Beta Cell Mass in Response to High-Fat Diet. Cell Metab. 2008;8:325–332. doi: 10.1016/j.cmet.2008.08.009. PubMed DOI
Jung H.S., Chung K.W., Kim J.W., Kim J., Komatsu M., Tanaka K., Nguyen Y.H., Kang T.M., Yoon K.H., Kim J.W., et al. Loss of Autophagy Diminishes Pancreatic beta Cell Mass and Function with Resultant Hyperglycemia. Cell Metab. 2008;8:318–324. doi: 10.1016/j.cmet.2008.08.013. PubMed DOI
Kaniuk N.A., Kiraly M., Bates H., Vranic M., Volchuk A., Brumell J.H. Ubiquitinated-protein aggregates form in pancreatic beta-cells during diabetes-induced oxidative stress and are regulated by autophagy. Diabetes. 2007;56:930–939. doi: 10.2337/db06-1160. PubMed DOI
Quan W., Hur K.Y., Lim Y., Oh S.H., Lee J.C., Kim K.H., Kim G.H., Kim S.W., Kim H.L., Lee M.K., et al. Autophagy deficiency in beta cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice. Diabetologia. 2012;55:392–403. doi: 10.1007/s00125-011-2350-y. PubMed DOI
Fujitani Y., Ebato C., Uchida T., Kawamori R., Watada H. beta-cell autophagy: A novel mechanism regulating beta-cell function and mass: Lessons from beta-cell-specific Atg7-deficient mice. Islets. 2009;1:151–153. doi: 10.4161/isl.1.2.9057. PubMed DOI
Masini M., Bugliani M., Lupi R., del Guerra S., Boggi U., Filipponi F., Marselli L., Masiello P., Marchetti P. Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia. 2009;52:1083–1086. doi: 10.1007/s00125-009-1347-2. PubMed DOI
Zummo F.P., Cullen K.S., Honkanen-Scott M., Shaw J.A.M., Lovat P.E., Arden C. Glucagon-Like Peptide 1 Protects Pancreatic-Cells From Death by Increasing Autophagic Flux and Restoring Lysosomal Function. Diabetes. 2017;66:1272–1285. doi: 10.2337/db16-1009. PubMed DOI
Li X., Zhang L., Meshinchi S., Dias-Leme C., Raffin D., Johnson J.D., Treutelaar M.K., Burant C.F. Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes. Diabetes. 2006;55:2965–2973. doi: 10.2337/db06-0733. PubMed DOI
Las G., Serada S.B., Wikstrom J.D., Twig G., Shirihai O.S. Fatty acids suppress autophagic turnover in beta-cells. J. Biol. Chem. 2011;286:42534–42544. doi: 10.1074/jbc.M111.242412. PubMed DOI PMC
Dhayal S., Zummo F.P., Anderson M.W., Thomas P., Welters H.J., Arden C., Morgan N.G. Differential effects of saturated and unsaturated fatty acids on autophagy in pancreatic beta-cells. J. Mol. Endocrinol. 2019;63:285–296. doi: 10.1530/JME-19-0096. PubMed DOI
Chu K.Y., O’Reilly L., Mellet N., Meikle P.J., Bartley C., Biden T.J. Oleate disrupts cAMP signaling, contributing to potent stimulation of pancreatic beta-cell autophagy. J. Biol. Chem. 2019;294:1218–1229. doi: 10.1074/jbc.RA118.004833. PubMed DOI PMC
Wang J., Wu J., Wu H., Liu X.Z., Chen Y.J., Wu J.Y., Hu C.J., Zou D.J. Liraglutide protects pancreatic beta-cells against free fatty acids in vitro and affects glucolipid metabolism in apolipoprotein E-/- mice by activating autophagy. Mol. Med. Rep. 2015;12:4210–4218. doi: 10.3892/mmr.2015.3944. PubMed DOI PMC
Hu M., Yang S., Yang L., Cheng Y., Zhang H. Interleukin-22 Alleviated Palmitate-Induced Endoplasmic Reticulum Stress in INS-1 Cells through Activation of Autophagy. PLoS ONE. 2016;11:e0146818. doi: 10.1371/journal.pone.0146818. PubMed DOI PMC
Lin N., Niu Y.X., Zhang W.W., Li X.Y., Yang Z., Su Q. microRNA-802 is involved in palmitate-induced damage to pancreatic beta cells through repression of sirtuin 6. Int. J. Clin. Exp. Pathol. 2017;10:11300–11307. PubMed PMC
Natalicchio A., Tortosa F., Labarbuta R., Biondi G., Marrano N., Carchia E., Leonardini A., Cignarelli A., Bugliani M., Marchetti P., et al. The p66(Shc) redox adaptor protein is induced by saturated fatty acids and mediates lipotoxicity-induced apoptosis in pancreatic beta cells. Diabetologia. 2015;58:1260–1271. doi: 10.1007/s00125-015-3563-2. PubMed DOI
Wehinger S., Ortiz R., Diaz M.I., Aguirre A., Valenzuela M., Llanos P., Mc Master C., Leyton L., Quest A.F. Phosphorylation of caveolin-1 on tyrosine-14 induced by ROS enhances palmitate-induced death of beta-pancreatic cells. Biochim. Biophys. Acta. 2015;1852:693–708. doi: 10.1016/j.bbadis.2014.12.021. PubMed DOI
Xu Q., Chen S.Y., Deng L.D., Feng L.P., Huang L.Z., Yu R.R. Antioxidant effect of mogrosides against oxidative stress induced by palmitic acid in mouse insulinoma NIT-1 cells. Braz. J. Med. Biol. Res. 2013;46:949–955. doi: 10.1590/1414-431X20133163. PubMed DOI PMC
Shen X., Yang L., Yan S., Wei W., Liang L., Zheng H., Cai X. The effect of FFAR1 on pioglitazone-mediated attenuation of palmitic acid-induced oxidative stress and apoptosis in betaTC6 cells. Metabolism. 2014;63:335–351. doi: 10.1016/j.metabol.2013.11.003. PubMed DOI
Cho Y.S., Kim C.H., Kim K.Y., Cheon H.G. Protective effects of arachidonic acid against palmitic acid-mediated lipotoxicity in HIT-T15 cells. Mol. Cell Biochem. 2012;364:19–28. doi: 10.1007/s11010-011-1200-z. PubMed DOI
Lin N., Chen H., Zhang H., Wan X., Su Q. Mitochondrial reactive oxygen species (ROS) inhibition ameliorates palmitate-induced INS-1 beta cell death. Endocrine. 2012;42:107–117. doi: 10.1007/s12020-012-9633-z. PubMed DOI
Lameloise N., Muzzin P., Prentki M., Assimacopoulos-Jeannet F. Uncoupling protein 2: A possible link between fatty acid excess and impaired glucose-induced insulin secretion? Diabetes. 2001;50:803–809. doi: 10.2337/diabetes.50.4.803. PubMed DOI
Santos L.R., Rebelato E., Graciano M.F., Abdulkader F., Curi R., Carpinelli A.R. Oleic acid modulates metabolic substrate channeling during glucose-stimulated insulin secretion via NAD(P)H oxidase. Endocrinology. 2011;152:3614–3621. doi: 10.1210/en.2011-0127. PubMed DOI
Koshkin V., Dai F.F., Robson-Doucette C.A., Chan C.B., Wheeler M.B. Limited mitochondrial permeabilization is an early manifestation of palmitate-induced lipotoxicity in pancreatic beta-cells. J. Biol. Chem. 2008;283:7936–7948. doi: 10.1074/jbc.M705652200. PubMed DOI
Redza-Dutordoir M., Averill-Bates D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res. 2016;1863:2977–2992. doi: 10.1016/j.bbamcr.2016.09.012. PubMed DOI
Steneberg P., Rubins N., Bartoov-Shifman R., Walker M.D., Edlund H. The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell Metab. 2005;1:245–258. doi: 10.1016/j.cmet.2005.03.007. PubMed DOI
Verma M.K., Sadasivuni M.K., Yateesh A.N., Neelima K., Mrudula S., Reddy M., Smitha R., Biswas S., Chandravanshi B., Pallavi P.M., et al. Activation of GPR40 attenuates chronic inflammation induced impact on pancreatic beta-cells health and function. BMC Cell Biol. 2014;15:24. doi: 10.1186/1471-2121-15-24. PubMed DOI PMC
Kung C.P., Murphy M.E. The role of the p53 tumor suppressor in metabolism and diabetes. J. Endocrinol. 2016;231:R61–R75. doi: 10.1530/JOE-16-0324. PubMed DOI PMC
Lovis P., Roggli E., Laybutt R., Gattesco S., Yang J.Y., Widmann C., Abderrahmani A., Regazzi R. Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes. 2008;57:2728–2736. doi: 10.2337/db07-1252. PubMed DOI PMC
Zhu Y.X., Sun Y., Zhou Y.C., Zhang Y., Zhang T., Li Y.T., You W.Y., Chang X.A., Yuan L., Han X. MicroRNA-24 promotes pancreatic beta cells toward dedifferentiation to avoid endoplasmic reticulum stress-induced apoptosis. J. Mol. Cell Biol. 2019;11:747–760. doi: 10.1093/jmcb/mjz004. PubMed DOI PMC
Lin X., Guan H., Huang Z., Liu J., Li H., Wei G., Cao X., Li Y. Downregulation of Bcl-2 expression by miR-34a mediates palmitate-induced Min6 cells apoptosis. J. Diabetes Res. 2014;2014:258695. doi: 10.1155/2014/258695. PubMed DOI PMC
Han Y.B., Wang M.N., Li Q., Guo L., Yang Y.M., Li P.J., Wang W., Zhang J.C. MicroRNA-34a contributes to the protective effects of glucagon-like peptide-1 against lipotoxicity in INS-1 cells. Chin. Med. J. 2012;125:4202–4208. PubMed
Li Y., Xu X.J., Liang Y., Liu S.Y., Xiao H.S., Li F., Cheng H., Fu Z.Z. miR-375 enhances palmitate-induced lipoapoptosis in insulin-secreting NIT-1 cells by repressing myotrophin (V1) protein expression. Int. J. Clin. Exp. Pathol. 2010;3:254–264. PubMed PMC
Liu Y., Dong J.Y., Ren B. MicroRNA-182-5p contributes to the protective effects of thrombospondin 1 against lipotoxicity in INS-1 cells. Exp. Med. 2018;16:5272–5279. doi: 10.3892/etm.2018.6883. PubMed DOI PMC
Guo R., Yu Y., Zhang Y.J., Li Y.L., Chu X., Lu H.M., Sun C.H. Overexpression of miR-297b-5p protects against stearic acid-induced pancreatic beta-cell apoptosis by targeting LATS2. Am. J. Physiol. Endocrinol. Metab. 2020;318:E430–E439. doi: 10.1152/ajpendo.00302.2019. PubMed DOI
Yu Y., Guo R., Zhang Y.J., Shi H.B., Sun H.R., Chu X., Wu X.Y., Lu H.M., Sun C.H. miRNA-mRNA profile and regulatory network in stearic acid-treated beta-cell dysfunction. J. Endocrinol. 2020;246:13–27. doi: 10.1530/JOE-20-0055. PubMed DOI
Chen J., Chen J., Cheng Y., Fu Y., Zhao H., Tang M., Zhao H., Lin N., Shi X., Lei Y., et al. Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation. Stem Cell Res. Ther. 2020;11:97. doi: 10.1186/s13287-020-01610-0. PubMed DOI PMC
Noguchi A., Takada M., Nakayama K., Ishikawa T. cGMP-independent anti-apoptotic effect of nitric oxide on thapsigargin-induced apoptosis in the pancreatic beta-cell line INS-1. Life Sci. 2008;83:865–870. doi: 10.1016/j.lfs.2008.10.002. PubMed DOI
Bachar E., Ariav Y., Cerasi E., Kaiser N., Leibowitz G. Neuronal nitric oxide synthase protects the pancreatic beta cell from glucolipotoxicity-induced endoplasmic reticulum stress and apoptosis. Diabetologia. 2010;53:2177–2187. doi: 10.1007/s00125-010-1833-6. PubMed DOI
Piro S., Anello M., Di P.C., Lizzio M.N., Patane G., Rabuazzo A.M., Vigneri R., Purrello M., Purrello F. Chronic exposure to free fatty acids or high glucose induces apoptosis in rat pancreatic islets: Possible role of oxidative stress. Metabolism. 2002;51:1340–1347. doi: 10.1053/meta.2002.35200. PubMed DOI
Sargsyan E., Ortsater H., Thorn K., Bergsten P. Diazoxide-induced beta-cell rest reduces endoplasmic reticulum stress in lipotoxic beta-cells. J. Endocrinol. 2008;199:41–50. doi: 10.1677/JOE-08-0251. PubMed DOI
Hara T., Mahadevan J., Kanekura K., Hara M., Lu S., Urano F. Calcium efflux from the endoplasmic reticulum leads to beta-cell death. Endocrinology. 2014;155:758–768. doi: 10.1210/en.2013-1519. PubMed DOI PMC
Zhou Y., Sun P., Wang T., Chen K., Zhu W., Wang H. Inhibition of Calcium Influx Reduces Dysfunction and Apoptosis in Lipotoxic Pancreatic beta-Cells via Regulation of Endoplasmic Reticulum Stress. PLoS ONE. 2015;10:e0132411. PubMed PMC
Vogel J., Yin J., Su L., Wang S.X., Zessis R., Fowler S., Chiu C.H., Wilson A.C., Chen A., Zecri F., et al. A Phenotypic Screen Identifies Calcium Overload as a Key Mechanism of beta-Cell Glucolipotoxicity. Diabetes. 2020;69:1032–1041. doi: 10.2337/db19-0813. PubMed DOI
Rakatzi I., Mueller H., Ritzeler O., Tennagels N., Eckel J. Adiponectin counteracts cytokine- and fatty acid-induced apoptosis in the pancreatic beta-cell line INS-1. Diabetologia. 2004;47:249–258. doi: 10.1007/s00125-003-1293-3. PubMed DOI
Melloul D. Role of NF-kappaB in beta-cell death. Biochem. Soc. Trans. 2008;36:334–339. doi: 10.1042/BST0360334. PubMed DOI
Khan S., Kowluru A. CD36 mediates lipid accumulation in pancreatic beta cells under the duress of glucolipotoxic conditions: Novel roles of lysine deacetylases. Biochem. Biophys. Res. Commun. 2018;495:2221–2226. doi: 10.1016/j.bbrc.2017.12.111. PubMed DOI PMC
Johnson J.D., Han Z., Otani K., Ye H., Zhang Y., Wu H., Horikawa Y., Misler S., Bell G.I., Polonsky K.S. RyR2 and calpain-10 delineate a novel apoptosis pathway in pancreatic islets. J. Biol. Chem. 2004;279:24794–24802. doi: 10.1074/jbc.M401216200. PubMed DOI
Nemcova-Furstova V., Balusikova K., Halada P., Pavlikova N., Sramek J., Kovar J. Stearate-Induced Apoptosis in Human Pancreatic beta-Cells is Associated with Changes in Membrane Protein Expression and These Changes are Inhibited by Oleate. Proteom. Clin. Appl. 2019;13:e1800104. doi: 10.1002/prca.201800104. PubMed DOI
Yamani L., Li B., Larose L. Nck1 deficiency improves pancreatic beta cell survival to diabetes-relevant stresses by modulating PERK activation and signaling. Cell. Signal. 2015;27:2555–2567. doi: 10.1016/j.cellsig.2015.09.016. PubMed DOI
Chowdhury I., Tharakan B., Bhat G.K. Caspases—An update. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2008;151:10–27. doi: 10.1016/j.cbpb.2008.05.010. PubMed DOI
Edlich F. BCL-2 proteins and apoptosis: Recent insights and unknowns. Biochem. Biophys. Res. Commun. 2018;500:26–34. doi: 10.1016/j.bbrc.2017.06.190. PubMed DOI
Gu J.Q., Wei Q., Zheng H.Z., Meng X., Zhang J., Wang D.F. Exendin-4 Promotes Survival of Mouse Pancreatic beta-Cell Line in Lipotoxic Conditions, through the Extracellular Signal-Related Kinase 1/2 Pathway. J. Diabetes Res. 2016;2016 doi: 10.1155/2016/5294025. PubMed DOI PMC
Ahn J.H., Kim M.H., Kwon H.J., Choi S.Y., Kwon H.Y. Protective Effects of Oleic Acid Against Palmitic Acid-Induced Apoptosis in Pancreatic AR42J Cells and Its Mechanisms. Korean J. Physiol. Pharmacol. 2013;17:43–50. doi: 10.4196/kjpp.2013.17.1.43. PubMed DOI PMC
Xiao H.T., Wen B., Ning Z.W., Zhai L.X., Liao C.H., Lin C.Y., Mu H.X., Bian Z.X. Cyclocarya paliurus tea leaves enhances pancreatic beta cell preservation through inhibition of apoptosis. Sci. Rep. 2017;7:13. PubMed PMC
Cunha D.A., Cito M., Carlsson P.O., Vanderwinden J.M., Molkentin J.D., Bugliani M., Marchetti P., Eizirik D.L., Cnop M. Thrombospondin 1 protects pancreatic beta-cells from lipotoxicity via the PERK-NRF2 pathway. Cell Death Differ. 2016;23:1995–2006. doi: 10.1038/cdd.2016.89. PubMed DOI PMC
Nogueira T.C., Paula F.M., Villate O., Colli M.L., Moura R.F., Cunha D.A., Marselli L., Marchetti P., Cnop M., Julier C., et al. GLIS3, a Susceptibility Gene for Type 1 and Type 2 Diabetes, Modulates Pancreatic Beta Cell Apoptosis via Regulation of a Splice Variant of the BH3-Only Protein Bim. PLoS Genet. 2013;9:e1003532. doi: 10.1371/journal.pgen.1003532. PubMed DOI PMC
Tan C., Voss U., Svensson S., Erlinge D., Olde B. High glucose and free fatty acids induce beta cell apoptosis via autocrine effects of ADP acting on the P2Y(13) receptor. Purinergic Signal. 2013;9:67–79. doi: 10.1007/s11302-012-9331-6. PubMed DOI PMC
Grishko V., Rachek L., Musiyenko S., Ledoux S.P., Wilson G.L. Involvement of mtDNA damage in free fatty acid-induced apoptosis. Free Radic. Biol. Med. 2005;38:755–762. doi: 10.1016/j.freeradbiomed.2004.11.023. PubMed DOI
Morishima N., Nakanishi K., Takenouchi H., Shibata T., Yasuhiko Y. An endoplasmic reticulum stress-specific caspase cascade in apoptosis—Cytochrome c-independent activation of caspase-9 by caspase-12. J. Biol. Chem. 2002;277:34287–34294. doi: 10.1074/jbc.M204973200. PubMed DOI
Long J., Su Y.X., Deng H.C. Lipoapoptosis Pathways in Pancreatic beta-Cells and the Anti-Apoptosis Mechanisms of Adiponectin. Horm. Metab. Res. 2014;46:722–727. PubMed
Lingohr M. Decreasing IRS-2 expression in pancreatic β-cells (INS-1) promotes apoptosis, which can be compensated for by introduction of IRS-4 expression. Mol. Cell. Endocrinol. 2003;209:17–31. doi: 10.1016/j.mce.2003.08.003. PubMed DOI
Marchetti P., Del G.S., Marselli L., Lupi R., Masini M., Pollera M., Bugliani M., Boggi U., Vistoli F., Mosca F., et al. Pancreatic islets from type 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin. J. Clin. Endocrinol. Metab. 2004;89:5535–5541. doi: 10.1210/jc.2004-0150. PubMed DOI
Liadis N., Salmena L., Kwan E., Tajmir P., Schroer S.A., Radziszewska A., Li X., Sheu L., Eweida M., Xu S., et al. Distinct in vivo roles of caspase-8 in beta-cells in physiological and diabetes models. Diabetes. 2007;56:2302–2311. doi: 10.2337/db06-1771. PubMed DOI
Liu H.F., Zhang Z.Y., Li Q. DR5 but not miRNA-181 or miRNA-211 is involved in ER stress-mediated apoptosis induced by palmitate in islet beta cells. Int. J. Clin. Exp. Pathol. 2017;10:7692–7698. PubMed PMC
Bagnati M., Ogunkolade B.W., Marshall C., Tucci C., Hanna K., Jones T.A., Bugliani M., Nedjai B., Caton P.W., Kieswich J., et al. Glucolipotoxicity initiates pancreatic beta-cell death through TNFR5/CD40-mediated STAT1 and NF-kappa B activation. Cell Death Dis. 2016;7:8. doi: 10.1038/cddis.2016.203. PubMed DOI PMC
Neubauer H., Setiadi P., Gunesdogan B., Pinto A., Borgel J., Mugge A. Influence of glycaemic control on platelet bound CD40-CD40L system, P-selectin and soluble CD40 ligand in Type 2 diabetes. Diabet. Med. 2010;27:384–390. doi: 10.1111/j.1464-5491.2010.02957.x. PubMed DOI
Cazanave S.C., Mott J.L., Bronk S.F., Werneburg N.W., Fingas C.D., Meng X.W., Finnberg N., El-Deiry W.S., Kaufmann S.H., Gores G.J. Death Receptor 5 Signaling Promotes Hepatocyte Lipoapoptosis. J. Biol. Chem. 2011;286:39336–39348. doi: 10.1074/jbc.M111.280420. PubMed DOI PMC
Choi D., Radziszewska A., Schroer S.A., Liadis N., Liu Y., Zhang Y., Lam P.P., Sheu L., Hao Z., Gaisano H.Y., et al. Deletion of Fas in the pancreatic beta-cells leads to enhanced insulin secretion. Am. J. Physiol. Endocrinol. Metab. 2009;297:E1304–E1312. doi: 10.1152/ajpendo.00217.2009. PubMed DOI
Johnson E.S., Lindblom K.R., Robeson A., Stevens R.D., Ilkayeva O.R., Newgard C.B., Kornbluth S., Andersen J.L. Metabolomic Profiling Reveals a Role for Caspase-2 in Lipoapoptosis. J. Biol. Chem. 2013;288:14463–14475. doi: 10.1074/jbc.M112.437210. PubMed DOI PMC
Sheng Q.F., Xiao X.W., Prasadan K., Chen C.D., Ming Y.C., Fusco J., Gangopadhyay N.N., Ricks D., Gittes G.K. Autophagy protects pancreatic beta cell mass and function in the setting of a high-fat and high-glucose diet. Sci. Rep. 2017;7:1–10. doi: 10.1038/s41598-017-16485-0. PubMed DOI PMC
Katsuma S., Hatae N., Yano T., Ruike Y., Kimura M., Hirasawa A., Tsujimoto G. Free fatty acids inhibit serum deprivation-induced apoptosis through GPR120 in a murine enteroendocrine cell line STC-1. J. Biol. Chem. 2005;280:19507–19515. doi: 10.1074/jbc.M412385200. PubMed DOI