Hypoxia Modulates Effects of Fatty Acids on NES2Y Human Pancreatic β-cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-10144S
Grantová Agentura České Republiky
PROGRES Q36
Univerzita Karlova v Praze
PubMed
31336948
PubMed Central
PMC6678120
DOI
10.3390/ijms20143441
PII: ijms20143441
Knihovny.cz E-zdroje
- Klíčová slova
- ER stress, NES2Y, apoptosis, caspases, fatty acid transporters, fatty acids, hypoxia, hypoxia-inducible factor 1α, pancreatic β-cells,
- MeSH
- beta-buňky metabolismus MeSH
- biologické markery MeSH
- buněčné linie MeSH
- hypoxie metabolismus MeSH
- kaspasy metabolismus MeSH
- lidé MeSH
- mastné kyseliny metabolismus MeSH
- proliferace buněk MeSH
- signální transdukce účinky léků MeSH
- stres endoplazmatického retikula MeSH
- viabilita buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- kaspasy MeSH
- mastné kyseliny MeSH
Saturated fatty acids (FAs) induce apoptosis in the human pancreatic NES2Y β-cell line while unsaturated FAs have nearly no detrimental effect. Moreover, unsaturated FAs are capable of inhibiting the pro-apoptotic effect of saturated FAs. Hypoxia is also known to have deleterious effects on β-cells function and viability. In the present study, we have tested the modulatory effect of hypoxia on the effect of FAs on the growth and viability of the human pancreatic NES2Y β-cells. This study represents the first study testing hypoxia effect on effects of FAs in pancreatic β-cells as well as in other cell types. We showed that hypoxia increased the pro-apoptotic effect of saturated stearic acid (SA). Endoplasmic reticulum stress signaling seemed to be involved while redistribution of FA transporters fatty acid translocase/cluster of differentiation 36 (FAT/CD36) and fatty acid-binding protein (FABP) do not seem to be involved in this effect. Hypoxia also strongly decreased the protective effect of unsaturated oleic acid (OA) against the pro-apoptotic effect of SA. Thus, in the presence of hypoxia, OA was unable to save SA-treated β-cells from apoptosis induction. Hypoxia itself had only a weak detrimental effect on NES2Y cells. Our data suggest that hypoxia could represent an important factor in pancreatic β-cell death induced and regulated by FAs and thus in the development of type 2 diabetes mellitus.
Zobrazit více v PubMed
Fürstova V., Kopska T., James R.F., Kovar J. Comparison of the effect of individual saturated and unsaturated fatty acids on cell growth and death induction in the human pancreatic β-cell line NES2Y. Life Sci. 2008;82:684–691. doi: 10.1016/j.lfs.2007.12.023. PubMed DOI
Welters H.J., Tadayyon M., Scarpello J.H., Smith S.A., Morgan N.G. Mono-unsaturated fatty acids protect against beta-cell apoptosis induced by saturated fatty acids, serum withdrawal or cytokine exposure. FEBS Lett. 2004;560:103–108. doi: 10.1016/S0014-5793(04)00079-1. PubMed DOI
Diakogiannaki E., Welters H.J., Morgan N.G. Differential regulation of the endoplasmic reticulum stress response in pancreatic beta-cells exposed to long-chain saturated and monounsaturated fatty acids. J. Endocrinol. Jun. 2008;197:553–563. doi: 10.1677/JOE-08-0041. PubMed DOI
Nemcova-Fürstova V., James R.F.L., Kovar J. Inhibitory effect of unsaturated fatty acids on saturated fatty acids-induced apoptosis in human pancreatic β-cells: activation of caspases and ER stress induction. Cell. Physiol. Biochem. 2011;27:525–538. doi: 10.1159/000329954. PubMed DOI
Lai Y., Brandhorst H., Hossain H., Bierhaus A., Chen C., Bretzel R.G., Linn T. Activation of NFκB dependent apoptotic pathway in pancreatic islet cells by hypoxia. Islets. 2009;1:19–25. doi: 10.4161/isl.1.1.8530. PubMed DOI
Zheng X., Zheng X., Wang X., Ma Z., Sunkari G.V., Botusan I., Takeda T., Björklund A., Inoue M., Catrina S.B., et al. Strong hypoxia induces apoptosis of pancreatic beta-cell by activation of the unfolded protein response and upregulation of CHOP. Cell Death Dis. 2012;3:e322. doi: 10.1038/cddis.2012.66. PubMed DOI PMC
Fang Y., Zhang Q., Tan J., Li L., An X., Lei P. Intermittent hypoxia-induced rat pancreatic β-cell apoptosis and protective effects of antioxidant intervention. Nutr. Diabetes. 2014;4:e131. doi: 10.1038/nutd.2014.28. PubMed DOI PMC
Jonas J.C., Sharma A., Hasenkamp W., Ilkova H., Patanè G., Laybutt R., Bonner-Weir S., Weir G.C. Chronic hyperglycemia triggers loss of pancreatic b cell differentiation in an animal model of diabetes. J. Biol. Chem. 1999;274:14112–14121. doi: 10.1074/jbc.274.20.14112. PubMed DOI
Li X., Zhang L., Meshinchi S., Dias-Leme C., Raffin D., Johnson J.D., Treutelaar M.K., Burant C.F. Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes. Diabetes. 2006;55:2965–2973. doi: 10.2337/db06-0733. PubMed DOI
Valencia-Flores M., Orea A., Castano V.A., Resendiz M., Rosales M., Rebollar V., Santiago V., Gallegos J., Campos R.M., Gonzalez J., et al. Prevalence of sleep apnea and electrocardiographic disturbances in morbidly obese patients. Obes. Res. 2000;8:262–269. doi: 10.1038/oby.2000.31. PubMed DOI
Lecomte P., Criniere L., Fagot-Campagna A., Druet C., Fuhrman C. Under diagnosis of obstructive sleep apnoea syndrome in patients with type 2 diabetes in France: ENTRED 2007. Diabetes Metab. 2013;39:139–147. doi: 10.1016/j.diabet.2012.10.004. PubMed DOI
Heffner J.E., Rozenfeld Y., Kai M., Stephens E.A., Brown L.K. Prevalence of diagnosed sleep apnea among patients with type 2 diabetes in primary care. Chest. 2012;141:1414–1421. doi: 10.1378/chest.11-1945. PubMed DOI
Fredheim J.M., Rollheim J., Omland T., Hofsø D., Røislien J., Vegsgaard K., Hjelmesæth J. Type 2 diabetes and pre-diabetes are associated with obstructive sleep apnea in extremely obese subjects: A cross-sectional study. Cardiovasc. Diabetol. 2011;10:84. doi: 10.1186/1475-2840-10-84. PubMed DOI PMC
Biden T.J., Boslem E., Chu K.Y., Sue N. Lipotoxic endoplasmic reticulum stress, β cell failure, and type 2 diabetes mellitus. Trends Endocrinol. Metab. 2014;25:1043–2760. doi: 10.1016/j.tem.2014.02.003. PubMed DOI
Bensellam M., Duvillie B., Rybachuk G., Laybutt D.R., Magnan C., Guiot Y., Pouysségur J., Jonas J.C. Glucoseinduced O2 consumption activates hypoxia inducible factors 1 and 2 in rat insulin-secreting pancreatic beta-cells. PLoS ONE. 2012;7:e29807. PubMed PMC
Hetz C., Martinon F., Rodriguez D., Glimcher L.H. The unfolded protein response: integrating stress signals through the stress sensor IRE1α. Physiol. Rev. 2011;91:1219–1243. doi: 10.1152/physrev.00001.2011. PubMed DOI
Tabas I., Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 2011;13:184–190. doi: 10.1038/ncb0311-184. PubMed DOI PMC
Chabowski A., Górski J., Calles-Escandon J., Tandon N.N., Bonen A. Hypoxia-induced fatty acid transporter translocation increases fatty acid transport and contributes to lipid accumulation in the heart. FEBS Lett. 2006;580:3617–3623. doi: 10.1016/j.febslet.2006.05.045. PubMed DOI
Hyder A., Zenhom M., Klapper M., Herrmann J., Schrezenmeir J. Expression of fatty acid binding proteins 3 and 5 genes in rat pancreatic islets and INS-1E cells: Regulation by fatty acids and glucose. Islets. 2010;2:174–184. doi: 10.4161/isl.2.3.11454. PubMed DOI
Dalgaard L.T., Thams P., Gaarn L.W., Jensen J., Lee Y.C., Nielsen J.H. Suppression of FAT/CD36 mRNA by human growth hormone in pancreatic beta-cells. Biochem. Biophys. Res. Commun. 2011;410:345–350. doi: 10.1016/j.bbrc.2011.06.010. PubMed DOI
Walford G.A., Moussignac R.L., Scribner A.W., Loscalzoand J., Leopold J.A. Hypoxia Potentiates Nitric Oxide-mediated Apoptosis in Endothelial Cells via Peroxynitrite-induced Activation of Mitochondria-dependent and -independent Pathways. J. Biol. Chem. 2004;279:4425–4432. doi: 10.1074/jbc.M310582200. PubMed DOI
Bullova P., Cougnoux A., Abunimer L., Kopacek J., Pastorekova S., Pacak K. Hypoxia potentiates the cytotoxic effect of piperlongumine in pheochromocytoma models. Oncotarget. 2016;7:40531–40545. doi: 10.18632/oncotarget.9643. PubMed DOI PMC
Sato Y., Inoue M., Yoshizawa T., Yamagata K. Moderate hypoxia induces β-cell dysfunction with HIF-1-independent gene expression changes. PLoS ONE. 2014;9:e114868. doi: 10.1371/journal.pone.0114868. PubMed DOI PMC
Qiao N., Xu C., Zhu Y.X., Cao Y., Liu D.C., Han X. Ets-1 as an early response gene against hypoxia-induced apoptosis in pancreatic β-cells. Cell Death Dis. 2015;6:e1650. doi: 10.1038/cddis.2015.8. PubMed DOI PMC
Oslowski C.M., Urano F. The binary switch that controls the life and death decisions of ER stressed beta cells. Curr. Opin. Cell Biol. 2010;23:207–2015. doi: 10.1016/j.ceb.2010.11.005. PubMed DOI PMC
Appenzeller-Herzog C., Ellgaard L. The human PDI family: Versatility packed into a single fold. Biochim. Biophys. Acta. 2008;1783:535–548. doi: 10.1016/j.bbamcr.2007.11.010. PubMed DOI
Sramek J., Nemcova-Fürstova V., Kovar J. Kinase signaling in apoptosis induced by saturated fatty acids in pancreatic β-cells. Int. J. Mol. Sci. 2016;17:1400. doi: 10.3390/ijms17091400. PubMed DOI PMC
Martinez S.C., Tanabe K., Cras-Méneur C., Abumrad N.A., Bernal-Mizrachi E., Permutt M.A. Inhibition of FoxO1 protects pancreatic islet β-cells against fatty acid and endoplasmic reticulum stress-induced apoptosis. Diabetes. 2008;57:846–859. doi: 10.2337/db07-0595. PubMed DOI
Macfarlane W.M., Cragg H., Docherty H.M., Read M.L., James R.F., Aynsley-Green A., Docherty K. Impaired expression of transcription factor IUF1 in a pancreatic beta-cell line derived from a patient with persistent hyperinsulinaemic hypoglycaemia of infancy (nesidioblastosis) FEBS Lett. 1997;413:304–308. doi: 10.1016/S0014-5793(97)00874-0. PubMed DOI
Musilkova J., Kovar J. Additive stimulatory effect of extracellular calcium and potassium on non-transferrin ferric iron uptake by HeLa and K562 cells. Biochim. Biophys. Acta. 2001;1514:117–126. doi: 10.1016/S0005-2736(01)00367-4. PubMed DOI
Polak J., Studer-Rabeler K., McHugh H., Hussain M.A., Shimoda L.A. System for exposing cultured cells to intermittent hypoxia utilizing gas permeable cultureware. Gen. Physiol. Biophys. 2015;34:235–247. doi: 10.4149/gpb_2014043. PubMed DOI PMC
Weiszenstein M., Pavlikova N., Elkalaf M., Halada P., Seda O., Trnka J., Kovar J., Polak J. The effect of pericellular oxygen levels on proteomic profile and lipogenesis in 3T3-L1 differentiated preadipocytes cultured on gas-permeable cultureware. PLoS ONE. 2016;11:e0152382. doi: 10.1371/journal.pone.0152382. PubMed DOI PMC
Kovar J., Franek F. Growth-stimulating effect of transferrin on a hybridoma cell line relation to transferrin iron-transporting function. Exp. Cell Res. 1989;182:358–369. doi: 10.1016/0014-4827(89)90241-3. PubMed DOI
Cnop M., Hannaert J.C., Hoorens A., Eizirik D.L., Pipeleers D.G. Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes. 2001;50:1771–1777. doi: 10.2337/diabetes.50.8.1771. PubMed DOI
Nemcova-Fürstova V., Balusikova K., Sramek J., James R.F., Kovar J. Caspase-2 and JNK Activated by Saturated Fatty Acids are Not Involved in Apoptosis Induction but Modulate ER Stress in Human Pancreatic β-cells. Cell. Physiol. Biochem. 2013;31:277–289. doi: 10.1159/000343367. PubMed DOI
Sramek J., Nemcova-Fürstova V., Balusikova K., Daniel P., Jelinek M., James R.F., Kovar J. P38 MAPK is activated but does not play a key role during apoptosis induction by saturated fatty Acid in human pancreatic β-cells. Int. J. Mol. Sci. 2016;17:159. doi: 10.3390/ijms17020159. PubMed DOI PMC
Sramek J., Nemcova-Fürstova V., Pavlikova N., Kovar J. Effect of Saturated Stearic Acid on MAP Kinase and ER Stress Signaling Pathways during Apoptosis Induction in Human Pancreatic β-Cells Is Inhibited by Unsaturated Oleic Acid. Int. J. Mol. Sci. 2017;18:2313. doi: 10.3390/ijms18112313. PubMed DOI PMC
Lagerstedt S.A., Hinrichs D.R., Batt S.M., Magera M.J., Rinaldo P., McConnell J.P. Quantitative determination of plasma c8-c26 total fatty acids for the biochemical diagnosis of nutritional and metabolic disorders. Mol. Genet. Metab. 2001;73:38–45. doi: 10.1006/mgme.2001.3170. PubMed DOI
Abdelmagid S.A., Clarke S.E., Nielsen D.E., Badawi A., El-Sohemy A., Mutch D.M., Ma D.W.L. Comprehensive profiling of plasma fatty acid concentrations in young healthy Canadian adults. PLoS ONE. 2015;10:e0116195. doi: 10.1371/journal.pone.0116195. PubMed DOI PMC
Carlsson P.O., Liss P., Andersson A., Jansson L. Measurements of oxygen tension in native and transplanted rat pancreatic islets. Diabetes. 1998;47:1027–1032. doi: 10.2337/diabetes.47.7.1027. PubMed DOI
Buchwald P. A local glucose-and oxygen concentration-based insulin secretion model for pancreatic islets. Theor. Biol. Med. Model. 2011;8:20. doi: 10.1186/1742-4682-8-20. PubMed DOI PMC
Molecular Mechanisms of Apoptosis Induction and Its Regulation by Fatty Acids in Pancreatic β-Cells