Survival of Patients with Primary Brain Tumors: Comparison of Two Statistical Approaches

. 2016 ; 11 (2) : e0148733. [epub] 20160210

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26863415

PURPOSE: We reviewed the survival time for patients with primary brain tumors undergoing treatment with stereotactic radiation methods at the Masaryk Memorial Cancer Institute Brno. We also identified risk factors and characteristics, and described their influence on survival time. METHODS: In summarizing survival data, there are two functions of principal interest, namely, the survival function and the hazard function. In practice, both of them can depend on some characteristics. We focused on nonparametric methods, propose a method based on kernel smoothing, and compared our estimates with the results of the Cox regression model. The hazard function is conditional to age and gross tumor volume and visualized as a color-coded surface. A multivariate Cox model was also designed. RESULTS: There were 88 patients with primary brain cancer, treated with stereotactic radiation. The median survival of our patient cohort was 47.8 months. The estimate of the hazard function has two peaks (about 10 months and about 40 months). The survival time of patients was significantly different for various diagnoses (p≪0.001), KI (p = 0.047) and stereotactic methods (p = 0.033). Patients with a greater GTV had higher risk of death. The suitable threshold for GTV is 20 cm3. Younger patients with a survival time of about 50 months had a higher risk of death. In the multivariate Cox regression model, the selected variables were age, GTV, sex, diagnosis, KI, location, and some of their interactions. CONCLUSION: Kernel methods give us the possibility to evaluate continuous risk variables and based on the results offer risk-prone patients a different treatment, and can be useful for verifying assumptions of the Cox model or for finding thresholds of continuous variables.

Zobrazit více v PubMed

Dušek L, Mužík J, Malušková D, Májek O, Pavlík T, Koptíková J, et al. Cancer incidence and mortality in the Czech Republic. Clinical oncology. 2014;27(6):406–423. PubMed

NCCN;. http://www.nccn.org/.

Šlampa P. Radiation oncology in practice (in Czech). Masaryk Memorial Cancer Institute; 2011. 201–225.

Šimonová G, Novotný J. Stereotactic radiosurgery and radiotherapy(in Czech) In: Radiation oncology. Galén; 2007. p. 413–426.

Liščák R. Gamma knife radiosurgery Principles and neurosurgical applications (in Czech). Grada; 2009. 77–92.

Doleželová H, Hynková L, Pospíšil P, Kazda T, Šlampa P, Ä?oupková I, et al. Therapeutic results of the treatment brain tumors using radiosurgery and stereotactic radiotherapy (in Czech). Clinical oncology. 2012;25(6):445–451. PubMed

Horová I, Koláček J, Zelinka J. Kernel Smoothing in MATLAB: Theory and Practice of Kernel Smoothing. World Scientific Publishing; 2012.

Kaplan EI, Meier PV. Nonparametric estimation from incomplete observations. Journal of the American Statistical Association. 1958;53(282):457–481. 10.1080/01621459.1958.10501452 DOI

Cox DR. Regression Models and Life-Tables. Journal of the Royal Statistical Society Series B. 1972;34(2):187–220.

Selingerová I, Horová I, Zelinka J. Kernel Estimation of Conditional Hazard Function for Cancer Data In: Niola V, editor. Recent Advances in Energy, Environment, Biology and Ecology. WSEAS Press; 2014. p. 33–39.

Spierdijk L. Nonparametric Conditional Hazard Rate Estimation: A Local Linear Approach. Computational Statistics & Data Analysis. 2008;52(5):2419–2434.

R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria; 2015. Available from: http://www.R-project.org/.

El Majdoub F, Elawady M, Bührle C, El-Khatib M, Hoevels M, Treuer H, et al. μMLC-LINAC radiosurgery for intracranial meningeomas: of komplex shape. Acta Neurochir. 2012;154(4):599–604. 10.1007/s00701-012-1278-4 PubMed DOI

Pollock BE, Stafford SL, Link MJ, Garces YI, Foote RL. Single-fraction Radiosurgery for Presumed Intracranial Meningiomas: Efficacy and Complications From a 22-Year Experience. Radiat Oncol. 2012;83(5):1414–1418. PubMed

Attia A, Chan MD, Mott RT, Russell GB, Seif D, Bourland JD, et al. Patterns of failure after treatment of atypical meningioma with gamma knife radiosurgery. Journal of neuro-oncology. 2012;108(1):179–185. 10.1007/s11060-012-0828-1 PubMed DOI PMC

Minniti G, Amichetti M, Enrici RM. Radiotherapy and radiosurgery for benign skull base meningiomas. Radiat Oncol. 2009;4(1):42 10.1186/1748-717X-4-42 PubMed DOI PMC

Metellus P, Regis J, Muracciole X, Fuentes S, Dufour H, Nanni I, et al. Evaluation of fractionated radiotherapy and gamma knife radiosurgery in cavernous sinus meningiomas: treatment strategy. Neurosurgery. 2005;57(5):873–886. PubMed

Lakomý R, Fadrus P, Šlampa P, Svoboda T, Kren L, Lzicarová E, et al. Multimodal treatment of glioblastoma multiforme: results of 86 consecutive patients diagnosed in period 2003–2009 (in Czech). Clinical oncology. 2011;24(2):112–120. PubMed

Biswas T, Okunieff P, Schell MC, Smudzin T, Pilcher WH, Bakos RS, et al. Stereotactic radiosurgery for glioblastoma: retrospective analysis. Journal of neuro-oncology. 2009;4(11). PubMed PMC

Kong DS, Lee JI, Park K, Kim JH, Lim DH, Nam DH. Efficacy of stereotactic radiosurgery as a salvage treatment for recurrent malignant gliomas. Cancer. 2008;112(9):2046–2051. 10.1002/cncr.23402 PubMed DOI

Fokas E, Wacker U, Gross MW, Henzel M, Encheva E, Engenhart-Cabillic R. Hypofractionated stereotactic reirradiation of recurrent glioblastomas: a beneficial treatment option after high-dose radiotherapy? Strahlentherapie und Onkologie. 2009;185(4):235–240. 10.1007/s00066-009-1753-x PubMed DOI

Rodrigues G, Gonzalez-Maldonado S, Bauman G, Senan S, Lagerwaard F. A statistical comparison of prognostic index systems for brain metastases after stereotactic radiosurgery or fractionated stereotactic radiation therapy. Clinical Oncology. 2013;25(4):227–235. 10.1016/j.clon.2012.11.006 PubMed DOI

Heagerty PJ, Lumley T, Pepe MS. Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics. 2000; 56(2): 337–344. 10.1111/j.0006-341X.2000.00337.x PubMed DOI

Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32–35. 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...