Effect of metal ions on autofluorescence of the dry rot fungus Serpula lacrymans grown on spruce wood
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26873389
DOI
10.1007/s12223-015-0415-x
PII: 10.1007/s12223-015-0415-x
Knihovny.cz E-resources
- MeSH
- Basidiomycota chemistry growth & development metabolism radiation effects MeSH
- Cell Wall chemistry metabolism radiation effects MeSH
- Wood microbiology MeSH
- Fluorescence MeSH
- Metals metabolism MeSH
- Mycelium chemistry growth & development metabolism radiation effects MeSH
- Picea microbiology MeSH
- Ultraviolet Rays MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Metals MeSH
This work describes autofluorescence of the mycelium of the dry rot fungus Serpula lacrymans grown on spruce wood blocks impregnated with various metals. Live mycelium, as opposed to dead mycelium, exhibited yellow autofluorescence upon blue excitation, blue fluorescence with ultraviolet (UV) excitation, orange-red and light-blue fluorescence with violet excitation, and red fluorescence with green excitation. Distinctive autofluorescence was observed in the fungal cell wall and in granula localized in the cytoplasm. In dead mycelium, the intensity of autofluorescence decreased and the signal was diffused throughout the cytoplasm. Metal treatment affected both the color and intensity of autofluorescence and also the morphology of the mycelium. The strongest yellow signal was observed with blue excitation in Cd-treated samples, in conjunction with increased branching and the formation of mycelial loops and protrusions. For the first time, we describe pink autofluorescence that was observed in Mn-, Zn-, and Cu-treated samples with UV, violet or. blue excitation. The lowest signals were obtained in Cu- and Fe-treated samples. Chitin, an important part of the fungal cell wall exhibited intensive primary fluorescence with UV, violet, blue, and green excitation.
See more in PubMed
Science. 2011 Aug 5;333(6043):762-5 PubMed
J Environ Sci (China). 2002 Jan;14(1):108-14 PubMed
Microbiol Rev. 1990 Sep;54(3):266-92 PubMed
Folia Microbiol (Praha). 2012 Nov;57(6):509-12 PubMed
Talanta. 2004 Feb 27;62(3):483-7 PubMed
J Appl Microbiol. 2011 Dec;111(6):1436-46 PubMed
Appl Environ Microbiol. 1995 Sep;61(9):3507-8 PubMed
Appl Environ Microbiol. 2006 May;72(5):3646-52 PubMed
Physiol Plant. 2009 Oct;137(2):148-54 PubMed
J Environ Manage. 2011 Jul;92(7):1681-9 PubMed
Folia Microbiol (Praha). 2008;53(6):537-9 PubMed
Can J Microbiol. 1983 Jun;29(6):653-8 PubMed
Bull Environ Contam Toxicol. 1996 Sep;57(3):383-90 PubMed
Folia Microbiol (Praha). 2006;51(2):109-13 PubMed
Cytometry A. 2013 Mar;83(3):324-8 PubMed
Folia Microbiol (Praha). 2010 Nov;55(6):625-8 PubMed
Adv Appl Microbiol. 2012;78:121-49 PubMed
Mikrobiologiia. 2010 Nov-Dec;79(6):723-33 PubMed
Mycol Res. 2006 Aug;110(Pt 8):887-97 PubMed
Indian J Pathol Microbiol. 2008 Apr-Jun;51(2):215-7 PubMed
Bull Environ Contam Toxicol. 1997 Oct;59(4):595-602 PubMed
Folia Microbiol (Praha). 2011 Mar;56(2):166-9 PubMed
Am J Clin Pathol. 1983 Feb;79(2):231-4 PubMed
Planta. 2003 Oct;217(6):971-82 PubMed
Mycologia. 2012 Nov-Dec;104(6):1267-71 PubMed