The establishment of species-specific primers for the molecular identification of ten stored-product psocids based on ITS2 rDNA
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26880378
PubMed Central
PMC4754681
DOI
10.1038/srep21022
PII: srep21022
Knihovny.cz E-zdroje
- MeSH
- druhová specificita MeSH
- hmyz klasifikace genetika MeSH
- intergenová DNA * MeSH
- molekulární evoluce MeSH
- ribozomální DNA * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- intergenová DNA * MeSH
- ribozomální DNA * MeSH
Psocids are important stored product pests found worldwide that can be spread through grain trade. Most stored-product psocids, including eggs, nymphs, and adults, are very small (~1 mm) and difficult to identify morphologically. Here, we collected 10 economically important stored-product Liposcelis spp. psocids (L. bostrychophila, L. entomophila, L. decolor, L. paeta, L. brunnea, L. corrodens, L. mendax, L. rufa, L. pearmani, and L. tricolor) from 35 geographical locations in 5 countries (China, Czech Republic, Denmark, Germany, and the United States). The ITS2 rDNA gene was extracted and sequenced. The interspecific genetic distance of the stored-product psocids was significantly higher than the intraspecific genetic distance according to the barcoding gap analysis. Ten pairs of species-specific primers based on the ITS2 rDNA were developed for psocid identification. The sensitivity estimation indicated that the species-specific primers could correctly amplify the target ITS2 gene and successfully identify psocids at 1.0 ng/mL. Additionally, these species-specific primers could quantify specificity and identify 10 stored-product psocids; this approach could also be used to accurately identify other stored-product psocids. This work provides a practical approach for the precise examination of 10 stored-product psocid species and also contributes to the development of an identification method using ITS2 rDNA.
Academy of State Administration of Grain Beijing 100037 China
College of Life Science China Jiliang University Hangzhou 310018 China
Crop Research Institute Drnovská 507 161 06 Prague 6 Czech Republic
Zobrazit více v PubMed
Arif M. et al. PCR and isothermal-based molecular identification of the stored-product psocid pest Lepinotus reticulatus (Psocoptera: Trogiidae). J. Stored Prod. Res. 50, 27–27 (2012).
Kucerova Z., Li Z. H. & Hromadkova J. Morphology of nymphs of common stored-product psocids (Psocoptera, Liposcelididae). J. Stored Prod. Res. 45, 54–60 (2009).
Mockford E. L. Systematics of North American Species of Sphaeropsocidae (Psocoptera). P. Entomol. Soc. Wash. 111, 666–685 (2009).
Li Z. H. et al. Morphological and molecular identification of three geographical populations of the storage pest Liposcelis bostrychophila (Psocoptera). J. Stored Prod. Res. 47, 168–172 (2011).
Yang Q. Q. et al. Diagnosis of Liposcelis entomophila (Insecta: Psocodea: Liposcelididae) based on morphological characteristics and DNA barcodes. J. Stored Prod. Res. 48, 120–125 (2012).
Qin M., Li Z. H., Kucerova Z., Cao Y. & Stejskal V. Rapid discrimination of the common species of the stored product pest Liposcelis (Psocoptera: Liposcelididae) from China and the Czech Republic, based on PCR-RFLP analysis. Eur. J. Entomol. 105, 713–717 (2008).
Wei D. D. et al. Sequence Analysis of the Ribosomal Internal Transcribed Spacers Region in Psocids (Psocoptera: Liposcelididae) for Phylogenetic Inference and Species Discrimination. J. Econ. Entomol. 104, 1720–1729 (2011). PubMed
Weller S. et al. The need for speed: Timely prevention of the dispersal of noxious weeds in relief fodder using efficient sampling procedures. Crop Prot. 70, 21–27 (2015).
Varadinova Z. et al. COI barcode based species-specific primers for identification of five species of stored-product pests from genus Cryptolestes (Coleoptera: Laemophloeidae). B. Entomol. Res. 105, 202–209 (2015). PubMed
Murphy K. A. et al. Using comparative genomics to develop a molecular diagnostic for the identification of an emerging pest Drosophila suzukii. B. Entomol. Res. 105, 364–372 (2015). PubMed
Fahmy N. T. et al. The Seasonality and Ecology of the Anopheles gambiae complex (Dipetra: Culicidae) in Liberia Using Molecular Identification. J. Med. Entomol. 52, 475–482 (2015). PubMed
Wu F. Z. et al. Morphological and Molecular Identification of Paracoccus Marginatus (Hemiptera: Pseudococcidae) in Yunnan, China. Fla. Entomol. 97, 1469–1473 (2014).
Aguirre C., Olivares N., Luppichini P. & Hinrichsen P. A PCR-Based Diagnostic System for Differentiating Two Weevil Species (Coleoptera: Curculionidae) of Economic Importance to the Chilean Citrus Industry. J. Econ. Entomol. 108, 107–113 (2015). PubMed
Flynn J. M., Brown E. A., Chain F. J. J., MacIsaac H. J. & Cristescu M. E. Toward accurate molecular identification of species in complex environmental samples: testing the performance of sequence filtering and clustering methods. Ecol. Evol. 5, 2252–2266 (2015). PubMed PMC
Urata M. Molecular Identification of Ptychodera flava (Hemichordata: Enteropneusta): Reconsideration in Light of Nucleotide Polymorphism in the 18S Ribosomal RNA Gene. Zool. Sci. 32, 307–313 (2015). PubMed
Olson R. L. O., Farris R. E., Barr N. B. & Cognato A. I. Molecular identification of Trogoderma granarium (Coleoptera: Dermestidae) using the 16s gene. J. Pest. Sci. 87, 701–710 (2014).
Ovalle T. M., Parsa S., Hernandez M. P. & Lopez-Lavalle L. A. B. Reliable molecular identification of nine tropical whitefly species. Ecol. Evol. 4, 3778–3787 (2014). PubMed PMC
Keskin E., Koyuncu C. E. & Genc E. Molecular identification of Hysterothylacium aduncum specimens isolated from commercially important fish species of Eastern Mediterranean Sea using mtDNA cox1 and ITS rDNA gene sequences. Parasitol. Int. 64, 222–228 (2015). PubMed
Nasir M. F., Hagedorn G., Buttner C., Reichmuth C. & Scholler M. Molecular identification of Trichogramma species from Pakistan, using ITS-2 region of rDNA. Biocontrol 58, 483–491 (2013).
El-Bondkly A. M. A. Molecular Identification Using ITS Sequences and Genome Shuffling to Improve 2-Deoxyglucose Tolerance and Xylanase Activity of Marine-Derived Fungus, Aspergillus Sp NRCF5. Appl. Biochem. Biotech. 167, 2160–2173 (2012). PubMed
He Y. et al. Internal transcribed spacers (ITS) identification of Angelica anomala Lallem Chuanbaizhi (in Chinese) cultivars collected in Sichuan and their molecular phylogenetic analysis with other Angelica L. species. J. Med. Plants Res. 5, 3653–3659 (2011).
El-Hariri M. D., Tawakkol W., El-Yazid H. A. & Refai M. Molecular studies on the rDNA ITS and ISSR regions for identification of Candida albicans, Cryptococcus neoformans and Microsporum canis using universal primers. Mycoses 53, 401–402 (2010).
Young I. & Coleman A. W. The advantages of the ITS2 region of the nuclear rDNA cistron for analysis of phylogenetic relationships of insects: a Drosophila example. Mol Phylogenet Evol. 30, 236–242 (2004). PubMed
Wu S., Li M., Tang P. A., Felton G. W. & Wang J. J. Cloning and characterization of acetylcholinesterase 1 genes from insecticide-resistant field populations of Liposcelis paeta Pearman (Psocoptera: Liposcelididae). Insect Biochem. Molec. 40, 415–424 (2010). PubMed
Yang Q. Q. et al. Rapid molecular diagnosis of the stored-product psocid Liposcelis corrodens (Psocodea: Liposcelididae): Species-specific PCR primers of 16S rDNA and COI. J. Stored Prod. Res. 54, 1–7 (2013).
Yang Q. Q. et al. Validation of the 16S rDNA and COI DNA Barcoding Technique for Rapid Molecular Identification of Stored Product Psocids (Insecta: Psocodea: Liposcelididae). J. Econ. Entomol. 106, 419–425 (2013). PubMed
Hassan M. W., Dou W., Chen L., Jiang H. B. & Wang J. J. Development, Survival, and Reproduction of the Psocid Liposcelis yunnaniensis (Psocoptera: Liposcelididae) at Constant Temperatures. J. Econ. Entomol. 104, 1436–1444 (2011). PubMed
Mikac K. M. & FitzSimmons N. N. Genetic structure and dispersal patterns of the invasive psocid Liposcelis decolor (Pearman) in Australian grain storage systems. B. Entomol. Res. 100, 521–527 (2010). PubMed
Ahmedani M. S., Shagufta N., Aslam M. & Hussnain S. A. Psocid: A new risk for global food security and safety. Appl. Entomol. Zool. 45, 89–100 (2010).
DeSalle R., Egan M. G. & Siddall M. The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philos. T. R. Soc. B. 360, 1905–1916 (2005). PubMed PMC
Luo A. R. et al. Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals. Bmc Genomics 12, (2011). PubMed PMC
Costa F. O. et al. Biological identifications through DNA barcodes: the case of the Crustacea. Can. J. Fish Aquat. Sci. 64, 272–295 (2007).
Kress W. J., Wurdack K. J., Zimmer E. A., Weigt L. A. & Janzen D. H. Use of DNA barcodes to identify flowering plants. P. Natl. Acad. Sci. USA 102, 8369–8374 (2005). PubMed PMC
Schoch C. L. et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. P. Natl. Acad. Sci. USA 109, 6241–6246 (2012). PubMed PMC
Fan R. et al. Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat. Biotechnol. 26, 1373–1378 (2008). PubMed PMC
Chesters D. et al. Heuristic optimization for global species clustering of DNA sequence data from multiple loci. Methods Ecol. Evol. 4, 961–970 (2013).