A Collaborative Evaluation of LC-MS/MS Based Methods for BMAA Analysis: Soluble Bound BMAA Found to Be an Important Fraction
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26938542
PubMed Central
PMC4820299
DOI
10.3390/md14030045
PII: md14030045
Knihovny.cz E-resources
- Keywords
- ">l-alanine (BMAA), 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC), Daphnia magna, Internal standard, Liquid chromatography-tandem mass spectrometry (LC-MS/MS), N-(2-aminoethyl) glycine (AEG), cycad, hydrophilic interaction liquid chromatography (HILIC), phytoplankton, seafood, α,γ-diaminobutyric acid (DAB), β-N-methylamino-,
- MeSH
- Amino Acids, Diamino analysis metabolism MeSH
- Chromatography, Liquid methods MeSH
- Daphnia MeSH
- Trichloroacetic Acid chemistry MeSH
- Brain metabolism MeSH
- Neurotoxins analysis metabolism MeSH
- Reproducibility of Results MeSH
- Cyanobacteria metabolism MeSH
- Tandem Mass Spectrometry methods MeSH
- Cyanobacteria Toxins MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Amino Acids, Diamino MeSH
- beta-N-methylamino-L-alanine MeSH Browser
- Trichloroacetic Acid MeSH
- Neurotoxins MeSH
- Cyanobacteria Toxins MeSH
Exposure to β-N-methylamino-l-alanine (BMAA) might be linked to the incidence of amyotrophic lateral sclerosis, Alzheimer's disease and Parkinson's disease. Analytical chemistry plays a crucial role in determining human BMAA exposure and the associated health risk, but the performance of various analytical methods currently employed is rarely compared. A CYANOCOST initiated workshop was organized aimed at training scientists in BMAA analysis, creating mutual understanding and paving the way towards interlaboratory comparison exercises. During this workshop, we tested different methods (extraction followed by derivatization and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis, or directly followed by LC-MS/MS analysis) for trueness and intermediate precision. We adapted three workup methods for the underivatized analysis of animal, brain and cyanobacterial samples. Based on recovery of the internal standard D₃BMAA, the underivatized methods were accurate (mean recovery 80%) and precise (mean relative standard deviation 10%), except for the cyanobacterium Leptolyngbya. However, total BMAA concentrations in the positive controls (cycad seeds) showed higher variation (relative standard deviation 21%-32%), implying that D₃BMAA was not a good indicator for the release of BMAA from bound forms. Significant losses occurred during workup for the derivatized method, resulting in low recovery (<10%). Most BMAA was found in a trichloroacetic acid soluble, bound form and we recommend including this fraction during analysis.
Alterra P O Box 47 Wageningen 6700 DD The Netherlands
Faculty of Science RECETOX Masaryk University Kamenice 5 625 00 Brno Czech Republic
NIOO KNAW Droevendaalsesteeg 10 Wageningen 6708 PB The Netherlands
Pharmacy and Life Sciences Robert Gordon University Aberdeen AB10 7GJ UK
See more in PubMed
Chiu A.S., Gehringer M.M., Welch J.H., Neilan B.A. Does α-amino-β-methylaminopropionic acid (BMAA) play a role in neurodegeneration? Int. J. Environ. Res. Public Health. 2011;8:3728–3746. doi: 10.3390/ijerph8093728. PubMed DOI PMC
Spencer P.S., Nunn P.B., Hugon J., Ludolph A.C., Ross S.M., Roy D.N., Robertson R.C. Guam amyotrophic lateral sclerosis-Parkinsonism-dementia linked to a plant excitant neurotoxin. Science. 1987;237:517–522. doi: 10.1126/science.3603037. PubMed DOI
Bradley W.G., Mash D.C. Beyond Guam: The cyanobacteria/BMAA hypothesis of the cause of ALS and other neurodegenerative diseases. Amyotroph. Lateral Scler. 2009;10(Suppl. 2):7–20. doi: 10.3109/17482960903286009. PubMed DOI
Pablo J., Banack S.A., Cox P.A., Johnson T.E., Papapetropoulos S., Bradley W.G., Buck A., Mash D.C. Cyanobacterial neurotoxin BMAA in ALS and Alzheimer’s disease. Acta Neurol. Scand. 2009;120:216–225. doi: 10.1111/j.1600-0404.2008.01150.x. PubMed DOI
Faassen E.J. Presence of the Neurotoxin BMAA in Aquatic Ecosystems: What Do We Really Know? Toxins. 2014;6:1109–1138. doi: 10.3390/toxins6031109. PubMed DOI PMC
Faassen E.J., Gillissen F., Zweers H.A.J., Lürling M. Determination of the neurotoxins BMAA (β-N-methylamino-l-alanine) and DAB (α-,γ-diaminobutyric acid) by LC-MSMS in Dutch urban waters with cyanobacterial blooms. Amyotroph. Lateral Scler. 2009;10(Suppl. 2):79–84. doi: 10.3109/17482960903272967. PubMed DOI
Jonasson S., Eriksson J., Berntzon L., Spáčil Z., Ilag L.L., Ronnevi L.O., Rasmussen U., Bergman B. Transfer of a cyanobacterial neurotoxin within a temperate aquatic ecosystem suggests pathways for human exposure. Proc. Natl. Acad. Sci. USA. 2010;107:9252–9257. doi: 10.1073/pnas.0914417107. PubMed DOI PMC
Jiang L., Eriksson J., Lage S., Jonasson S., Shams S., Mehine M., Ilag L.L., Rasmussen U. Diatoms: A novel source for the neurotoxin BMAA in aquatic environments. PLoS ONE. 2014;9:45. doi: 10.1371/journal.pone.0084578. PubMed DOI PMC
Faassen E.J., García-Altares M., Mendes e Mello M., Lürling M. Trans generational effects of the neurotoxin BMAA on the aquatic grazer Daphnia magna. Aquat. Toxicol. 2015;168:98–107. doi: 10.1016/j.aquatox.2015.09.018. PubMed DOI
Lürling M., Faassen E.J., Eenennaam J.S.V. Effects of the cyanobacterial neurotoxin β-N-methylamino-l-alanine (BMAA) on the survival, mobility and reproduction of Daphnia magna. J. Plankton Res. 2011;33:333–342. doi: 10.1093/plankt/fbq130. DOI
Esterhuizen-Londt M., Wiegand C., Downing T.G. β-N-methylamino-l-alanine (BMAA) uptake by the animal model, Daphnia magna and subsequent oxidative stress. Toxicon. 2015;100:20–26. doi: 10.1016/j.toxicon.2015.03.021. PubMed DOI
Downing S., Contardo-Jara V., Pflugmacher S., Downing T.G. The fate of the cyanobacterial toxin β-N-methylamino-l-alanine in freshwater mussels. Ecotoxicol. Environ. Saf. 2014;101:51–58. doi: 10.1016/j.ecoenv.2013.11.028. PubMed DOI
Esterhuizen M., Pflugmacher S., Downing T.G. β-N-Methylamino-l-alanine (BMAA) uptake by the aquatic macrophyte Ceratophyllum demersum. Ecotoxicol. Environ. Saf. 2011;74:74–77. doi: 10.1016/j.ecoenv.2010.04.005. PubMed DOI
Lampinen Salomonsson M., Hansson A., Bondesson U. Development and in-house validation of a method for quantification of BMAA in mussels using dansyl chloride derivatization and ultra performance liquid chromatography tandem mass spectrometry. Anal. Methods. 2013;5:4865–4874. doi: 10.1039/c3ay40657a. DOI
Réveillon D., Abadie E., Séchet V., Brient L., Savar V., Bardouil M., Hess P., Amzil Z. Beta-N-methylamino-l-alanine: LC-MS/MS optimization, screening of cyanobacterial strains and occurrence in shellfish from Thau, a French Mediterranean Lagoon. Mar. Drugs. 2014;12:5441–5467. doi: 10.3390/md12115441. PubMed DOI PMC
Jiang L., Kiselova N., Rosén J., Ilag L.L. Quantification of neurotoxin BMAA (β-N-methylamino-l-alanine) in seafood from Swedish markets. Sci. Rep. 2014;4:6931. doi: 10.1038/srep06931. PubMed DOI PMC
Faassen E.J., Gillissen F., Lürling M. A comparative study on three analytical methods for the determination of the neurotoxin BMAA in cyanobacteria. PLoS ONE. 2012;7:45. doi: 10.1371/journal.pone.0036667. PubMed DOI PMC
Berntzon L., Ronnevi L.O., Bergman B., Eriksson J. Detection of BMAA in the human central nervous system. Neuroscience. 2015;292:137–147. doi: 10.1016/j.neuroscience.2015.02.032. PubMed DOI
Duncan M.W. Good mass spectrometry and its place in good science. J. Mass Spectrom. 2012;47:795–809. doi: 10.1002/jms.3038. PubMed DOI
Cohen S.A. Analytical techniques for the detection of α-amino-β-methylaminopropionic acid. Analyst. 2012;137:1991–2005. doi: 10.1039/c2an16250d. PubMed DOI
Rosén J., Westerberg E., Schmiedt S., Hellenäs K.E. BMAA detected as neither free nor protein bound amino acid in blue mussels. Toxicon. 2016;109:45–50. doi: 10.1016/j.toxicon.2015.11.008. PubMed DOI
Cox P.A., Banack S.A., Murch S.J., Rasmussen U., Tien G., Bidigare R.R., Metcalf J.S., Morrison L.F., Codd G.A., Bergman B. Diverse taxa of cyanobacteria produce β-N-methylamino-l-alanine, a neurotoxic amino acid. Proc. Natl. Acad. Sci. USA. 2005;102:5074–5078. doi: 10.1073/pnas.0501526102. PubMed DOI PMC
Metcalf J.S., Banack S.A., Lindsay J., Morrison L.F., Cox P.A., Codd G.A. Co-occurrence of β-N-methylamino-l-alanine, a neurotoxic amino acid with other cyanobacterial toxins in British waterbodies, 1990–2004. Environ. Microbiol. 2008;10:702–708. doi: 10.1111/j.1462-2920.2007.01492.x. PubMed DOI
Dunlop R.A., Cox P.A., Banack S.A., Rodgers K.J. The non-protein amino acid BMAA is misincorporated into human proteins in place of l-serine causing protein misfolding and aggregation. PLoS ONE. 2013;8:45. doi: 10.1371/journal.pone.0075376. PubMed DOI PMC
Glover W.B., Mash D.C., Murch S.J. The natural non-protein amino acid N-β-methylamino-l-alanine (BMAA) is incorporated into protein during synthesis. Amino Acids. 2014;46:2553–2559. doi: 10.1007/s00726-014-1812-1. PubMed DOI
Van Onselen R., Cook N.A., Phelan R.R., Downing T.G. Bacteria do not incorporate β-N-methylamino-l-alanine into their proteins. Toxicon. 2015;102:55–61. doi: 10.1016/j.toxicon.2015.05.014. PubMed DOI
Cheng R., Banack S.A. Previous studies underestimate BMAA concentrations in cycad flour. Amyotroph. Lateral Scler. 2009;10(Suppl. 2):41–43. doi: 10.3109/17482960903273528. PubMed DOI
Réveillon D., Abadie E., Séchet V., Masseret E., Hess P., Amzil Z. β-N-methylamino-l-alanine (BMAA) and isomers: Distribution in different food web compartments of Thau lagoon, French Mediterranean Sea. Mar. Environ. Res. 2015;110:8–18. doi: 10.1016/j.marenvres.2015.07.015. PubMed DOI
Esterhuizen M., Downing T.G. β-N-methylamino-l-alanine (BMAA) in novel South African cyanobacterial isolates. Ecotoxicol. Environ. Saf. 2008;71:309–313. doi: 10.1016/j.ecoenv.2008.04.010. PubMed DOI
Downing S., Esterhuizen-Londt M., Grant Downing T. β-N-methylamino-l-alanine (BMAA) metabolism in the aquatic macrophyte Ceratophyllum demersum. Ecotoxicol. Environ. Saf. 2015;120:88–92. doi: 10.1016/j.ecoenv.2015.05.022. PubMed DOI
Rosén J., Hellenäs K.E. Determination of the neurotoxin BMAA (β-N-methylamino-l-alanine) in cycad seed and cyanobacteria by LC-MS/MS (liquid chromatography tandem mass spectrometry) Analyst. 2008;133:1785–1789. doi: 10.1039/b809231a. PubMed DOI
Li A., Fan H., Ma F., McCarron P., Thomas K., Tang X., Quilliam M.A. Elucidation of matrix effects and performance of solid-phase extraction for LC-MS/MS analysis of β-N-methylamino-l-alanine (BMAA) and 2,4-diaminobutyric acid (DAB) neurotoxins in cyanobacteria. Analyst. 2012;137:1210–1219. doi: 10.1039/c2an15887f. PubMed DOI
Combes A., El Abdellaoui S., Sarazin C., Vial J., Mejean A., Ploux O., Pichon V. Validation of the analytical procedure for the determination of the neurotoxin β-N-methylamino-l-alanine in complex environmental samples. Anal. Chim. Acta. 2013;771:42–49. doi: 10.1016/j.aca.2013.02.016. PubMed DOI
Banack S.A., Johnson H.E., Cheng R., Cox P.A. Production of the neurotoxin BMAA by a marine cyanobacterium. Mar. Drugs. 2007;5:180–196. doi: 10.3390/md504180. PubMed DOI PMC
Jiang L., Aigret B., De Borggraeve W.M., Spacil Z., Ilag L.L. Selective LC-MS/MS method for the identification of BMAA from its isomers in biological samples. Anal. Bioanal. Chem. 2012;403:1719–1730. doi: 10.1007/s00216-012-5966-y. PubMed DOI
Downing S., Banack S.A., Metcalf J.S., Cox P.A., Downing T.G. Nitrogen starvation of cyanobacteria results in the production of β-N-methylamino-l-alanine. Toxicon. 2011;58:187–194. doi: 10.1016/j.toxicon.2011.05.017. PubMed DOI
Roy-Lachapelle A., Solliec M., Sauvé S. Determination of BMAA and three alkaloid cyanotoxins in lake water using dansyl chloride derivatization and high-resolution mass spectrometry. Anal. Bioanal. Chem. 2015;407:5487–5501. doi: 10.1007/s00216-015-8722-2. PubMed DOI
Combes A., El Abdellaoui S., Vial J., Lagrange E., Pichon V. Development of an analytical procedure for quantifying the underivatized neurotoxin β-N-methylamino-l-alanine in brain tissues. Anal. Bioanal. Chem. 2014;406:4627–4636. doi: 10.1007/s00216-014-7872-y. PubMed DOI
Lage S., Burian A., Rasmussen U., Costa P.R., Annadotter H., Godhe A., Rydberg S. BMAA extraction of cyanobacteria samples: Which method to choose? Environ. Sci. Pollut. Res. 2015 doi: 10.1007/s11356-015-5266-0. in press. PubMed DOI
Guidance Document on Analytical Quality Control and Validation Procedures for Pesticide Residues Analysis in Food and Feed. [(accessed on 24 August 2015)]. Available online: http://ec.europa.eu/food/plant/pesticides/guidance_documents/docs/qualcontrol_en.pdf.
Beach D.G., Kerrin E.S., Quilliam M.A. Selective quantitation of the neurotoxin BMAA by use of hydrophilic-interaction liquid chromatography-differential mobility spectrometry-tandem mass spectrometry (HILIC–DMS–MS/MS) Anal. Bioanal. Chem. 2015;407:8379–8409. doi: 10.1007/s00216-015-9012-8. PubMed DOI