• This record comes from PubMed

A Collaborative Evaluation of LC-MS/MS Based Methods for BMAA Analysis: Soluble Bound BMAA Found to Be an Important Fraction

. 2016 Feb 29 ; 14 (3) : . [epub] 20160229

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Exposure to β-N-methylamino-l-alanine (BMAA) might be linked to the incidence of amyotrophic lateral sclerosis, Alzheimer's disease and Parkinson's disease. Analytical chemistry plays a crucial role in determining human BMAA exposure and the associated health risk, but the performance of various analytical methods currently employed is rarely compared. A CYANOCOST initiated workshop was organized aimed at training scientists in BMAA analysis, creating mutual understanding and paving the way towards interlaboratory comparison exercises. During this workshop, we tested different methods (extraction followed by derivatization and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis, or directly followed by LC-MS/MS analysis) for trueness and intermediate precision. We adapted three workup methods for the underivatized analysis of animal, brain and cyanobacterial samples. Based on recovery of the internal standard D₃BMAA, the underivatized methods were accurate (mean recovery 80%) and precise (mean relative standard deviation 10%), except for the cyanobacterium Leptolyngbya. However, total BMAA concentrations in the positive controls (cycad seeds) showed higher variation (relative standard deviation 21%-32%), implying that D₃BMAA was not a good indicator for the release of BMAA from bound forms. Significant losses occurred during workup for the derivatized method, resulting in low recovery (<10%). Most BMAA was found in a trichloroacetic acid soluble, bound form and we recommend including this fraction during analysis.

Alterra P O Box 47 Wageningen 6700 DD The Netherlands

Aquatic Ecology and Water Quality Management Group Wageningen University P O Box 47 Wageningen 6700 DD The Netherlands

Biochemistry Faculty of Science and Engineering Åbo Akademi University Tykistökatu 6A 3rd Floor Turku 20520 Finland

Department of Analytical Bioanalytical Sciences and Miniaturization UMR CBI 8231 ESPCI ParisTech CNRS PSL Research University ESPCI ParisTech 75005 Paris France

Department of Environmental Science and Analytical Chemistry Stockholm University SE 10691 Stockholm Sweden

Department of Environmental Science and Technology Cyprus University of Technology 3036 Lemesos Cyprus

Department of Marine Biotechnology University of Gdansk Al Marszalka Pilsudskiego 46 Gdynia 81 378 Poland

Drinking Water Resources and Water Treatment Federal Environment Agency Schichauweg 58 12307 Berlin Germany

Faculty of Science RECETOX Masaryk University Kamenice 5 625 00 Brno Czech Republic

Institute for Pathological Physiology School of Medicine University of Belgrade 11000 Belgrade Serbia

Kinneret Limnological Laboratory Israel Oceanographic and Limnological Research P O Box 447 Migdal 14950 Israel

Laboratory of Catalytic Photocatalytic Processes and Environmental Analysis Institute of Nanoscience and Nanotechnology National Center for Scientific Research Demokritos Patriarchou Grigoriou and Neapoleos 15310 Agia Paraskevi Athens Greece

Mass Spectrometry Research Centre and PROTEOBIO Research Groups Department of Physical Sciences Cork Institute of Technology Rossa Avenue Bishopstown V92 F9WY Co Cork Ireland

NIOO KNAW Droevendaalsesteeg 10 Wageningen 6708 PB The Netherlands

Pharmacy and Life Sciences Robert Gordon University Aberdeen AB10 7GJ UK

Saint Petersburg Scientific Research Centre for Ecological Safety Russian Academy of Sciences 18 Korpusnaya street St Petersburg 197110 Russia

Water Quality Department Division of Quality Research and Development 156 Oropou str 11146 Athens Greece

See more in PubMed

Chiu A.S., Gehringer M.M., Welch J.H., Neilan B.A. Does α-amino-β-methylaminopropionic acid (BMAA) play a role in neurodegeneration? Int. J. Environ. Res. Public Health. 2011;8:3728–3746. doi: 10.3390/ijerph8093728. PubMed DOI PMC

Spencer P.S., Nunn P.B., Hugon J., Ludolph A.C., Ross S.M., Roy D.N., Robertson R.C. Guam amyotrophic lateral sclerosis-Parkinsonism-dementia linked to a plant excitant neurotoxin. Science. 1987;237:517–522. doi: 10.1126/science.3603037. PubMed DOI

Bradley W.G., Mash D.C. Beyond Guam: The cyanobacteria/BMAA hypothesis of the cause of ALS and other neurodegenerative diseases. Amyotroph. Lateral Scler. 2009;10(Suppl. 2):7–20. doi: 10.3109/17482960903286009. PubMed DOI

Pablo J., Banack S.A., Cox P.A., Johnson T.E., Papapetropoulos S., Bradley W.G., Buck A., Mash D.C. Cyanobacterial neurotoxin BMAA in ALS and Alzheimer’s disease. Acta Neurol. Scand. 2009;120:216–225. doi: 10.1111/j.1600-0404.2008.01150.x. PubMed DOI

Faassen E.J. Presence of the Neurotoxin BMAA in Aquatic Ecosystems: What Do We Really Know? Toxins. 2014;6:1109–1138. doi: 10.3390/toxins6031109. PubMed DOI PMC

Faassen E.J., Gillissen F., Zweers H.A.J., Lürling M. Determination of the neurotoxins BMAA (β-N-methylamino-l-alanine) and DAB (α-,γ-diaminobutyric acid) by LC-MSMS in Dutch urban waters with cyanobacterial blooms. Amyotroph. Lateral Scler. 2009;10(Suppl. 2):79–84. doi: 10.3109/17482960903272967. PubMed DOI

Jonasson S., Eriksson J., Berntzon L., Spáčil Z., Ilag L.L., Ronnevi L.O., Rasmussen U., Bergman B. Transfer of a cyanobacterial neurotoxin within a temperate aquatic ecosystem suggests pathways for human exposure. Proc. Natl. Acad. Sci. USA. 2010;107:9252–9257. doi: 10.1073/pnas.0914417107. PubMed DOI PMC

Jiang L., Eriksson J., Lage S., Jonasson S., Shams S., Mehine M., Ilag L.L., Rasmussen U. Diatoms: A novel source for the neurotoxin BMAA in aquatic environments. PLoS ONE. 2014;9:45. doi: 10.1371/journal.pone.0084578. PubMed DOI PMC

Faassen E.J., García-Altares M., Mendes e Mello M., Lürling M. Trans generational effects of the neurotoxin BMAA on the aquatic grazer Daphnia magna. Aquat. Toxicol. 2015;168:98–107. doi: 10.1016/j.aquatox.2015.09.018. PubMed DOI

Lürling M., Faassen E.J., Eenennaam J.S.V. Effects of the cyanobacterial neurotoxin β-N-methylamino-l-alanine (BMAA) on the survival, mobility and reproduction of Daphnia magna. J. Plankton Res. 2011;33:333–342. doi: 10.1093/plankt/fbq130. DOI

Esterhuizen-Londt M., Wiegand C., Downing T.G. β-N-methylamino-l-alanine (BMAA) uptake by the animal model, Daphnia magna and subsequent oxidative stress. Toxicon. 2015;100:20–26. doi: 10.1016/j.toxicon.2015.03.021. PubMed DOI

Downing S., Contardo-Jara V., Pflugmacher S., Downing T.G. The fate of the cyanobacterial toxin β-N-methylamino-l-alanine in freshwater mussels. Ecotoxicol. Environ. Saf. 2014;101:51–58. doi: 10.1016/j.ecoenv.2013.11.028. PubMed DOI

Esterhuizen M., Pflugmacher S., Downing T.G. β-N-Methylamino-l-alanine (BMAA) uptake by the aquatic macrophyte Ceratophyllum demersum. Ecotoxicol. Environ. Saf. 2011;74:74–77. doi: 10.1016/j.ecoenv.2010.04.005. PubMed DOI

Lampinen Salomonsson M., Hansson A., Bondesson U. Development and in-house validation of a method for quantification of BMAA in mussels using dansyl chloride derivatization and ultra performance liquid chromatography tandem mass spectrometry. Anal. Methods. 2013;5:4865–4874. doi: 10.1039/c3ay40657a. DOI

Réveillon D., Abadie E., Séchet V., Brient L., Savar V., Bardouil M., Hess P., Amzil Z. Beta-N-methylamino-l-alanine: LC-MS/MS optimization, screening of cyanobacterial strains and occurrence in shellfish from Thau, a French Mediterranean Lagoon. Mar. Drugs. 2014;12:5441–5467. doi: 10.3390/md12115441. PubMed DOI PMC

Jiang L., Kiselova N., Rosén J., Ilag L.L. Quantification of neurotoxin BMAA (β-N-methylamino-l-alanine) in seafood from Swedish markets. Sci. Rep. 2014;4:6931. doi: 10.1038/srep06931. PubMed DOI PMC

Faassen E.J., Gillissen F., Lürling M. A comparative study on three analytical methods for the determination of the neurotoxin BMAA in cyanobacteria. PLoS ONE. 2012;7:45. doi: 10.1371/journal.pone.0036667. PubMed DOI PMC

Berntzon L., Ronnevi L.O., Bergman B., Eriksson J. Detection of BMAA in the human central nervous system. Neuroscience. 2015;292:137–147. doi: 10.1016/j.neuroscience.2015.02.032. PubMed DOI

Duncan M.W. Good mass spectrometry and its place in good science. J. Mass Spectrom. 2012;47:795–809. doi: 10.1002/jms.3038. PubMed DOI

Cohen S.A. Analytical techniques for the detection of α-amino-β-methylaminopropionic acid. Analyst. 2012;137:1991–2005. doi: 10.1039/c2an16250d. PubMed DOI

Rosén J., Westerberg E., Schmiedt S., Hellenäs K.E. BMAA detected as neither free nor protein bound amino acid in blue mussels. Toxicon. 2016;109:45–50. doi: 10.1016/j.toxicon.2015.11.008. PubMed DOI

Cox P.A., Banack S.A., Murch S.J., Rasmussen U., Tien G., Bidigare R.R., Metcalf J.S., Morrison L.F., Codd G.A., Bergman B. Diverse taxa of cyanobacteria produce β-N-methylamino-l-alanine, a neurotoxic amino acid. Proc. Natl. Acad. Sci. USA. 2005;102:5074–5078. doi: 10.1073/pnas.0501526102. PubMed DOI PMC

Metcalf J.S., Banack S.A., Lindsay J., Morrison L.F., Cox P.A., Codd G.A. Co-occurrence of β-N-methylamino-l-alanine, a neurotoxic amino acid with other cyanobacterial toxins in British waterbodies, 1990–2004. Environ. Microbiol. 2008;10:702–708. doi: 10.1111/j.1462-2920.2007.01492.x. PubMed DOI

Dunlop R.A., Cox P.A., Banack S.A., Rodgers K.J. The non-protein amino acid BMAA is misincorporated into human proteins in place of l-serine causing protein misfolding and aggregation. PLoS ONE. 2013;8:45. doi: 10.1371/journal.pone.0075376. PubMed DOI PMC

Glover W.B., Mash D.C., Murch S.J. The natural non-protein amino acid N-β-methylamino-l-alanine (BMAA) is incorporated into protein during synthesis. Amino Acids. 2014;46:2553–2559. doi: 10.1007/s00726-014-1812-1. PubMed DOI

Van Onselen R., Cook N.A., Phelan R.R., Downing T.G. Bacteria do not incorporate β-N-methylamino-l-alanine into their proteins. Toxicon. 2015;102:55–61. doi: 10.1016/j.toxicon.2015.05.014. PubMed DOI

Cheng R., Banack S.A. Previous studies underestimate BMAA concentrations in cycad flour. Amyotroph. Lateral Scler. 2009;10(Suppl. 2):41–43. doi: 10.3109/17482960903273528. PubMed DOI

Réveillon D., Abadie E., Séchet V., Masseret E., Hess P., Amzil Z. β-N-methylamino-l-alanine (BMAA) and isomers: Distribution in different food web compartments of Thau lagoon, French Mediterranean Sea. Mar. Environ. Res. 2015;110:8–18. doi: 10.1016/j.marenvres.2015.07.015. PubMed DOI

Esterhuizen M., Downing T.G. β-N-methylamino-l-alanine (BMAA) in novel South African cyanobacterial isolates. Ecotoxicol. Environ. Saf. 2008;71:309–313. doi: 10.1016/j.ecoenv.2008.04.010. PubMed DOI

Downing S., Esterhuizen-Londt M., Grant Downing T. β-N-methylamino-l-alanine (BMAA) metabolism in the aquatic macrophyte Ceratophyllum demersum. Ecotoxicol. Environ. Saf. 2015;120:88–92. doi: 10.1016/j.ecoenv.2015.05.022. PubMed DOI

Rosén J., Hellenäs K.E. Determination of the neurotoxin BMAA (β-N-methylamino-l-alanine) in cycad seed and cyanobacteria by LC-MS/MS (liquid chromatography tandem mass spectrometry) Analyst. 2008;133:1785–1789. doi: 10.1039/b809231a. PubMed DOI

Li A., Fan H., Ma F., McCarron P., Thomas K., Tang X., Quilliam M.A. Elucidation of matrix effects and performance of solid-phase extraction for LC-MS/MS analysis of β-N-methylamino-l-alanine (BMAA) and 2,4-diaminobutyric acid (DAB) neurotoxins in cyanobacteria. Analyst. 2012;137:1210–1219. doi: 10.1039/c2an15887f. PubMed DOI

Combes A., El Abdellaoui S., Sarazin C., Vial J., Mejean A., Ploux O., Pichon V. Validation of the analytical procedure for the determination of the neurotoxin β-N-methylamino-l-alanine in complex environmental samples. Anal. Chim. Acta. 2013;771:42–49. doi: 10.1016/j.aca.2013.02.016. PubMed DOI

Banack S.A., Johnson H.E., Cheng R., Cox P.A. Production of the neurotoxin BMAA by a marine cyanobacterium. Mar. Drugs. 2007;5:180–196. doi: 10.3390/md504180. PubMed DOI PMC

Jiang L., Aigret B., De Borggraeve W.M., Spacil Z., Ilag L.L. Selective LC-MS/MS method for the identification of BMAA from its isomers in biological samples. Anal. Bioanal. Chem. 2012;403:1719–1730. doi: 10.1007/s00216-012-5966-y. PubMed DOI

Downing S., Banack S.A., Metcalf J.S., Cox P.A., Downing T.G. Nitrogen starvation of cyanobacteria results in the production of β-N-methylamino-l-alanine. Toxicon. 2011;58:187–194. doi: 10.1016/j.toxicon.2011.05.017. PubMed DOI

Roy-Lachapelle A., Solliec M., Sauvé S. Determination of BMAA and three alkaloid cyanotoxins in lake water using dansyl chloride derivatization and high-resolution mass spectrometry. Anal. Bioanal. Chem. 2015;407:5487–5501. doi: 10.1007/s00216-015-8722-2. PubMed DOI

Combes A., El Abdellaoui S., Vial J., Lagrange E., Pichon V. Development of an analytical procedure for quantifying the underivatized neurotoxin β-N-methylamino-l-alanine in brain tissues. Anal. Bioanal. Chem. 2014;406:4627–4636. doi: 10.1007/s00216-014-7872-y. PubMed DOI

Lage S., Burian A., Rasmussen U., Costa P.R., Annadotter H., Godhe A., Rydberg S. BMAA extraction of cyanobacteria samples: Which method to choose? Environ. Sci. Pollut. Res. 2015 doi: 10.1007/s11356-015-5266-0. in press. PubMed DOI

Guidance Document on Analytical Quality Control and Validation Procedures for Pesticide Residues Analysis in Food and Feed. [(accessed on 24 August 2015)]. Available online: http://ec.europa.eu/food/plant/pesticides/guidance_documents/docs/qualcontrol_en.pdf.

Beach D.G., Kerrin E.S., Quilliam M.A. Selective quantitation of the neurotoxin BMAA by use of hydrophilic-interaction liquid chromatography-differential mobility spectrometry-tandem mass spectrometry (HILIC–DMS–MS/MS) Anal. Bioanal. Chem. 2015;407:8379–8409. doi: 10.1007/s00216-015-9012-8. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...