Heritable gene expression differences between apomictic clone members in Taraxacum officinale: Insights into early stages of evolutionary divergence in asexual plants
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26956152
PubMed Central
PMC4782324
DOI
10.1186/s12864-016-2524-6
PII: 10.1186/s12864-016-2524-6
Knihovny.cz E-resources
- MeSH
- Molecular Sequence Annotation MeSH
- Polymorphism, Single Nucleotide MeSH
- Evolution, Molecular * MeSH
- Reproduction, Asexual genetics MeSH
- Genetics, Population MeSH
- Gene Expression Regulation, Plant MeSH
- RNA, Plant genetics MeSH
- Sequence Analysis, RNA MeSH
- Taraxacum genetics MeSH
- Transcriptome * MeSH
- DNA Transposable Elements MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
- Germany MeSH
- Names of Substances
- RNA, Plant MeSH
- DNA Transposable Elements MeSH
BACKGROUND: Asexual reproduction has the potential to enhance deleterious mutation accumulation and to constrain adaptive evolution. One source of mutations that can be especially relevant in recent asexuals is activity of transposable elements (TEs), which may have experienced selection for high transposition rates in sexual ancestor populations. Predictions of genomic divergence under asexual reproduction therefore likely include a large contribution of transposable elements but limited adaptive divergence. For plants empirical insight into genome divergence under asexual reproduction remains limited. Here, we characterize expression divergence between clone members of a single apomictic lineage of the common dandelion (Taraxacum officinale) to contribute to our knowledge of genome evolution under asexuality. RESULTS: Using RNA-Seq, we show that about one third of heritable divergence within the apomictic lineage is driven by TEs and TE-related gene activity. In addition, we identify non-random transcriptional differences in pathways related to acyl-lipid and abscisic acid metabolisms which might reflect functional divergence within the apomictic lineage. We analyze SNPs in the transcriptome to assess genetic divergence between the apomictic clone members and reveal that heritable expression differences between the accessions are not explained simply by genome-wide genetic divergence. CONCLUSION: The present study depicts a first effort towards a more complete understanding of apomictic plant genome evolution. We identify abundant TE activity and ecologically relevant functional genes and pathways affecting heritable within-lineage expression divergence. These findings offer valuable resources for future work looking at epigenetic silencing and Cis-regulation of gene expression with particular emphasis on the effects of TE activity on asexual species' genome.
See more in PubMed
Otto SP. The evolutionary enigma of sex. Am Nat. 2009;174(Suppl 1):S1–S14. doi: 10.1086/599084. PubMed DOI
The Angiosperm Phylogeny Group An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc. 2003;141:399–436. doi: 10.1046/j.1095-8339.2003.t01-1-00158.x. DOI
Baker H. Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL, editors. The Genetics of colonizing species. New York: Academic; 1965. pp. 147–168.
Peck JR, Yearsley JM, Waxman D. Explaining the geographic distributions of sexual and asexual populations. Nature. 1998;391:889–892. doi: 10.1038/36099. DOI
Hamilton WD, Axelrod R, Tanese R. Sexual reproduction as an adaptation to resist parasites (a review) Proc Natl Acad Sci. 1990;87:3566–3573. doi: 10.1073/pnas.87.9.3566. PubMed DOI PMC
Neiman M, Hehman G, Miller JT, Logsdon JM, Taylor DR. Accelerated mutation accumulation in asexual lineages of a freshwater snail. Mol Biol Evol. 2010;27:954–963. doi: 10.1093/molbev/msp300. PubMed DOI PMC
Tucker AE, Ackerman MS, Eads BD, Xu S, Lynch M. Population-genomic insights into the evolutionary origin and fate of obligately asexual Daphnia pulex. Proc Natl Acad Sci. 2013;110:15740–15745. doi: 10.1073/pnas.1313388110. PubMed DOI PMC
Nogler G. Gametophytic apomixis. In: Johri BM, editor. Embryology of Angiosperms. Berlin: Springer; 1984. p. 475.
Grossniklaus U, Nogler GA, van Dijk PJ. How to avoid sex: the genetic control of gametophytic apomixis. Plant Cell. 2001;13:1491–1498. doi: 10.1105/tpc.13.7.1491. PubMed DOI PMC
Koltunow AM, Grossniklaus U. Apomixis: a developmental perspective. Annu Rev Plant Biol. 2003;54:547–574. doi: 10.1146/annurev.arplant.54.110901.160842. PubMed DOI
Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet. 2005;6:836–846. doi: 10.1038/nrg1711. PubMed DOI
Rushworth CA, Song B-H, Lee C-R, Mitchell-Olds T. Boechera, a model system for ecological genomics. Mol Ecol. 2011;20:4843–4857. doi: 10.1111/j.1365-294X.2011.05340.x. PubMed DOI PMC
Adams KL. Evolution of duplicate gene expression in polyploid and hybrid plants. J Hered. 2007;98:136–141. doi: 10.1093/jhered/esl061. PubMed DOI
Otto SP. The evolutionary consequences of polyploidy. Cell. 2007;131:452–462. doi: 10.1016/j.cell.2007.10.022. PubMed DOI
Richards AJ. Apomixis in flowering plants: an overview. Philos Trans R Soc B Biol Sci. 2003;358:1085–1093. doi: 10.1098/rstb.2003.1294. PubMed DOI PMC
Finnigan GC, Hanson-Smith V, Stevens TH, Thornton JW. Evolution of increased complexity in a molecular machine. Nature. 2012;481:360–364. PubMed PMC
Mau M, Lovell JT, Corral JM, Kiefer C, Koch MA, Aliyu OM, Sharbel TF. Hybrid apomicts trapped in the ecological niches of their sexual ancestors. Proc Natl Acad Sci. 2015;112:E2357–65. PubMed PMC
Aliyu OM, Seifert M, Corral JM, Fuchs J, Sharbel TF. Copy number variation in transcriptionally active regions of sexual and apomictic Boechera demonstrates independently derived apomictic lineages. Plant Cell. 2013;25:3808–3823. doi: 10.1105/tpc.113.113860. PubMed DOI PMC
Pellino M, Hojsgaard D, Schmutzer T, Scholz U, Hörandl E, Vogel H, Sharbel TF. Asexual genome evolution in the apomictic Ranunculus auricomus complex: examining the effects of hybridization and mutation accumulation. Mol Ecol. 2013;22:5908–5921. doi: 10.1111/mec.12533. PubMed DOI
Hollister JD, Greiner S, Wang W, Wang J, Zhang Y, Wong GK-S, Wright SI, Johnson MTJ. Recurrent loss of sex is associated with accumulation of deleterious mutations in Oenothera. Mol Biol Evol. 2014;32(4):896–905. PubMed
Stapley J, Santure AW, Dennis SR. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol Ecol. 2015;24(9):2241–2252. doi: 10.1111/mec.13089. PubMed DOI
Mirouze M, Paszkowski J. Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol. 2011;14:267–274. doi: 10.1016/j.pbi.2011.03.004. PubMed DOI
Slotkin RK, Nuthikattu S, Jiang N. The Impact of transposable elements on gene and genome evolution. In: Wendel JF, Greilhuber J, Dolezel J, Leitch IJ, editors. Plant Genome Diversity. Vienna: Springer; 2012. pp. 35–58.
Wright S, Finnegan D. Genome evolution. Sex and the transposable element. Curr Biol. 2001;11:R296–R299. doi: 10.1016/S0960-9822(01)00168-3. PubMed DOI
Arkhipova I, Meselson M. Deleterious transposable elements and the extinction of asexuals. Bioessays. 2005;27:76–85. doi: 10.1002/bies.20159. PubMed DOI
Tas ICQ, van Dijk PJ. Crosses between sexual and apomictic dandelions (Taraxacum). I. The inheritance of apomixis. Heredity. 1999;83:707–714. doi: 10.1046/j.1365-2540.1999.00619.x. PubMed DOI
Van Dijk PJ. Ecological and evolutionary opportunities of apomixis: insights from Taraxacum and Chondrilla. Philos Trans R Soc B Biol Sci. 2003;358:1113–1121. doi: 10.1098/rstb.2003.1302. PubMed DOI PMC
Verhoeven KJF, Van Dijk PJ, Biere A. Changes in genomic methylation patterns during the formation of triploid asexual dandelion lineages. Mol Ecol. 2010;19:315–324. doi: 10.1111/j.1365-294X.2009.04460.x. PubMed DOI
Verhoeven KJF, Jansen JJ, van Dijk PJ, Biere A. Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol. 2010;185:1108–1118. doi: 10.1111/j.1469-8137.2009.03121.x. PubMed DOI
Kirschner J, Oplaat C, Verhoeven KJF, Uhlemann I, Travnicek B, Rasanen J, Zeisek V, Wislchut RA, Stepanek J. Two sides of the coin: Taxonomic identity of oligoclonal agamospermous microspecies versus their microsatellite characterization. Preslia. In press
Rogstad SH. Saturated NaCl-CTAB solution as a means of field preservation of leaves for DNA analyses. Taxon. 1992;41:701–708. doi: 10.2307/1222395. DOI
Vijverberg K, Van Der Hulst RGM, Lindhout P, Van Dijk PJ. A genetic linkage map of the diplosporous chromosomal region in Taraxacum officinale (common dandelion; Asteraceae) TAG Theor Appl Genet Theor Angew Genet. 2004;108:725–732. doi: 10.1007/s00122-003-1474-y. PubMed DOI
Falque M, Keurentjes J, Bakx-Schotman JMT, Van Dijk PJ. Development and characterization of microsatellite markers in the sexual-apomictic complex Taraxacum officinale (dandelion) Theor Appl Genet. 1998;97:283–292. doi: 10.1007/s001220050897. DOI
Vašut RJ, Van Dijk PJ, Falque M, Trávníček B, De Jong JH. Development and characterization of nine new microsatellite markers in Taraxacum (Asteraceae) Mol Ecol Notes. 2004;4:645–648. doi: 10.1111/j.1471-8286.2004.00760.x. DOI
Gustafsson Å. Apomixis in higher plants. I. The mechanism of apomixis. Lunds Univ Årsskr. 1946;42:1–67.
Grimanelli D, Leblanc O, Perotti E, Grossniklaus U. Developmental genetics of gametophytic apomixis. Trends Genet. 2001;17:597–604. doi: 10.1016/S0168-9525(01)02454-4. PubMed DOI
Jiang L, Schlesinger F, Davis CA, Zhang Y, Li R, Salit M, Gingeras TR, Oliver B. Synthetic spike-in standards for RNA-seq experiments. Genome Res. 2011;21:1543–51. PubMed PMC
Baker SC, Bauer SR, Beyer RP, Brenton JD, Bromley B, Burrill J, Causton H, Conley MP, Elespuru R, Fero M, Foy C, Fuscoe J, Gao X, Gerhold DL, Gilles P, Goodsaid F, Guo X, Hackett J, Hockett RD, Ikonomi P, Irizarry RA, Kawasaki ES, Kaysser-Kranich T, Kerr K, Kiser G, Koch WH, 562 Lee KY, Liu C, Liu ZL, Lucas A, et al. The External RNA Controls Consortium: a progress report. Nat Methods. 2005;2:731–4. PubMed
Aronesty E. ea-utils: “Command-line tools for processing biological sequencing data.” 2011. Http://code.google.com/p/ea-utils. Accessed Feb 2014.
Van Gurp TP, McIntyre LM, Verhoeven KJF. Consistent errors in first strand cDNA due to random hexamer mispriming. Plos ONE. 2013;8:e85583. doi: 10.1371/journal.pone.0085583. PubMed DOI PMC
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, macmanes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, leduc RD, Friedman N, Regev A. De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nat Protoc. 2013;8:1494–512. PubMed PMC
Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J Conesa A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36:3420–35. PubMed PMC
Blüthgen N, Brand K, Cajavec B, Swat M, Herzel H, Beule D. Biological profiling of gene groups utilizing Gene Ontology. Genome Inform Int Conf Genome Inform. 2005;16:106–115. PubMed
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25. doi: 10.1186/gb-2009-10-3-r25. PubMed DOI PMC
Li B, Dewey CN. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323. doi: 10.1186/1471-2105-12-323. PubMed DOI PMC
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106. doi: 10.1186/gb-2010-11-10-r106. PubMed DOI PMC
Bourgon R, Gentleman R, Huber W. Independent filtering increases detection power for high-throughput experiments. Proc Natl Acad Sci U S A. 2010;107:9546–9551. doi: 10.1073/pnas.0914005107. PubMed DOI PMC
Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
Peakall R, Smouse PE. Genalex 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics. 2012;28:2537–2539. doi: 10.1093/bioinformatics/bts460. PubMed DOI PMC
Katari MS, Nowicki SD, Aceituno FF, Nero D, Kelfer J, Thompson LP, Cabello JM, Davidson RS, Goldberg AP, Shasha DE, Coruzzi GM, Gutiérrez RA. Virtualplant: A software platform to support systems biology research. Plant Physiol. 2010;152:500–15. PubMed PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinforma Oxf Engl. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and Samtools. Bioinforma Oxf Engl. 2009;25:2078–9. PubMed PMC
Quinlan AR, Hall IM. Bedtools: A flexible suite of utilities for comparing genomic features. Bioinforma Oxf Engl. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC
R Core Team . R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2013.
Hamming R. Error detecting and error correcting codes. Bell Syst Tech J. 1950;29:147–160. doi: 10.1002/j.1538-7305.1950.tb00463.x. DOI
Paradis E, Claude J, Strimmer K. APE: Analyses of Phylogenetics and Evolution in R language. Bioinforma Oxf Engl. 2004;20:289–290. doi: 10.1093/bioinformatics/btg412. PubMed DOI
Müllner D. Fastcluster: Fast Hierarchical, Agglomerative Clustering Routines for R and Python. J Stat Soft. 2013;53(9):1–18. doi: 10.18637/jss.v053.i09. DOI
Bonnet E, de Peer YV. Zt: A Sofware Tool for Simple and Partial Mantel Tests. J Stat Soft. 2002;7(10):1–12. doi: 10.18637/jss.v007.i10. DOI
Aziz RK, Breitbart M, Edwards RA. Transposases are the most abundant, most ubiquitous genes in nature. Nucleic Acids Res. 2010;38:4207–4217. doi: 10.1093/nar/gkq140. PubMed DOI PMC
Lee TI, Young RA. Transcription of eukaryotic protein-coding genes. Annu Rev Genet. 2000;34:77–137. doi: 10.1146/annurev.genet.34.1.77. PubMed DOI
Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge. Acyl-lipid metabolism. Arab Book Am Soc Plant Biol. 2013;11:e0161. PubMed PMC
Gillmor CS, Lukowitz W, Brininstool G, Sedbrook JC, Hamann T, Poindexter P, Somerville C. Glycosylphosphatidylinositol-anchored proteins are required for cell wall synthesis and morphogenesis in Arabidopsis. Plant Cell. 2005;17:1128–40. PubMed PMC
Posé D, Castanedo I, Borsani O, Nieto B, Rosado A, Taconnat L, Ferrer A, Dolan L, Valpuesta V, Botella MA. Identification of the Arabidopsis dry2/sqe1-5 mutant reveals a central role for sterols in drought tolerance and regulation of reactive oxygen species. Plant J Cell Mol Biol. 2009;59:63–76. PubMed
Kejnovsky E, Hawkins JS, Feschotte C. Plant Transposable Elements: Biology and Evolution. In: Wendel JF, Greilhuber J, Dolezel J, Leitch IJ, editors. Plant Genome Diversity. Vienna: Springer; 2012. pp. 17–34.
Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet. 2007;39:61–69. doi: 10.1038/ng1929. PubMed DOI
Grandbastien M-A, Audeon C, Bonnivard E, Casacuberta JM, Chalhoub B, Costa A-PP, Le QH, Melayah D, Petit M, Poncet C, Tam SM, Van Sluys M-A, Mhiri C. Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet Genome Res. 2005;110:229–41. PubMed
Parisod C, Senerchia N. Responses of Transposable Elements to Polyploidy. In: Grandbastien M-A, Casacuberta JM, editors. Plant Transposable Elements. Heidelberg: Springer Berlin; 2012. pp. 147–168.
Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR. An active DNA transposon family in rice. Nature. 2003;421:163–7. PubMed
Wang Q, Dooner HK. Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci. 2006;103:17644–17649. doi: 10.1073/pnas.0603080103. PubMed DOI PMC
Glémin S, Galtier N. Genome evolution in outcrossing versus selfing versus asexual species. Methods Mol Biol Clifton NJ. 2012;855:311–335. doi: 10.1007/978-1-61779-582-4_11. PubMed DOI
Kraaijeveld K, Zwanenburg B, Hubert B, Vieira C, De Pater S, Van Alphen J, Den Dunnen Jt, De Knijff P. Transposon proliferation in an asexual parasitoid. Mol Ecol. 2012;21:3898–906. PubMed
Bui QT, Grandbastien M-A. LTR Retrotransposons as Controlling Elements of Genome Response to Stress? In: Grandbastien M-A, Casacuberta JM, editors. Plant Transposable Elements. Heidelberg: Springer Berlin; 2012. pp. 273–296.
Ito H, Yoshida T, Tsukahara S, Kawabe A. Evolution of the ONSEN retrotransposon family activated upon heat stress in Brassicaceae. Gene. 2013;518:256–261. doi: 10.1016/j.gene.2013.01.034. PubMed DOI
Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN, Ross-Ibarra J, Springer NM. Transposable elements contribute to activation of maize genes in response to abiotic stress. Plos Genet. 2015;11. http://www.ncbi.nlm.nih.gov/pubmed/25569788. PubMed PMC
Grandbastien MA, Spielmann A, Caboche M. Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature. 1989;337:376–380. doi: 10.1038/337376a0. PubMed DOI
Gould SJ, Vrba ES. Exaptation; a missing term in the science of form. Paleobiology. 1982;8:4–15. doi: 10.1017/S0094837300004310. DOI
Hoen DR, Bureau TE. Transposable Element Exaptation in Plants. In: Grandbastien M-A, Casacuberta JM, editors. Plant Transposable Elements. Heidelberg: Springer Berlin; 2012. pp. 219–251.
Hudson ME, Lisch DR, Quail PH. The FHY3 and FAR1 genes encode transposase-related proteins involved in regulation of gene expression by the phytochrome A-signaling pathway. Plant J. 2003;34:453–471. doi: 10.1046/j.1365-313X.2003.01741.x. PubMed DOI
Lin R, Ding L, Casola C, Ripoll DR, Feschotte C, Wang H. Transposase-Derived Transcription Factors Regulate Light Signaling in Arabidopsis. Science. 2007;318:1302–1305. doi: 10.1126/science.1146281. PubMed DOI PMC
Oh D-H, Hong H, Lee SY, Yun D-J, Bohnert HJ, Dassanayake M. Genome structures and transcriptomes signify niche adaptation for the multiple-ion-tolerant extremophyte Schrenkiella parvula. Plant Physiol. 2014;164:2123–2138. doi: 10.1104/pp.113.233551. PubMed DOI PMC
Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell. 2004;16:2463–2480. doi: 10.1105/tpc.104.022897. PubMed DOI PMC
Schaller A, Stintzi A. Enzymes in jasmonate biosynthesis - structure, function, regulation. Phytochemistry. 2009;70:1532–1538. doi: 10.1016/j.phytochem.2009.07.032. PubMed DOI
Mosblech A, Feussner I, Heilmann I. Oxylipins: Structurally diverse metabolites from fatty acid oxidation. Plant Physiol Biochem. 2009;47:511–517. doi: 10.1016/j.plaphy.2008.12.011. PubMed DOI
Verhage A, Vlaardingerbroek I, Raaymakers C, Van Dam NM, Dicke M, Van Wees SCM, Pieterse CMJ. Rewiring of the jasmonate signaling pathway in Arabidopsis during insect herbivory. Front Plant Sci. 2011;2. http://journal.frontiersin.org/article/10.3389/fpls.2011.00047/abstract. PubMed DOI PMC
Schwartz S, Zeevaart JD. Abscisic acid biosynthesis and metabolism. In: Davies P, editor. Plant Hormones. Netherlands: Springer; 2010. pp. 137–155.
Xiong L, Lee H, Ishitani M, Zhu J-K. Regulation of osmotic stress-responsive gene expression by thelos6/ABA1 locus in Arabidopsis. J Biol Chem. 2002;277:8588–8596. doi: 10.1074/jbc.M109275200. PubMed DOI