Inhibition of Lipolysis Ameliorates Diabetic Phenotype in a Mouse Model of Obstructive Sleep Apnea
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
F32 HL070578
NHLBI NIH HHS - United States
RC1 HL099952
NHLBI NIH HHS - United States
PubMed
26978122
PubMed Central
PMC4979366
DOI
10.1165/rcmb.2015-0315oc
Knihovny.cz E-zdroje
- Klíčová slova
- diabetes, insulin resistance, intermittent hypoxia, lipolysis, obstructive sleep apnea,
- MeSH
- adipozita účinky léků MeSH
- experimentální diabetes mellitus krev komplikace genetika patologie MeSH
- fenotyp MeSH
- glukosa metabolismus MeSH
- hypoxie komplikace metabolismus MeSH
- inzulin metabolismus MeSH
- lipolýza * účinky léků MeSH
- mastné kyseliny krev MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- obstrukční spánková apnoe krev komplikace genetika patologie MeSH
- pyraziny farmakologie MeSH
- regulace genové exprese účinky léků MeSH
- signální transdukce účinky léků MeSH
- tukové buňky účinky léků patologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- acipimox MeSH Prohlížeč
- glukosa MeSH
- inzulin MeSH
- mastné kyseliny MeSH
- pyraziny MeSH
Obstructive sleep apnea (OSA) is associated with insulin resistance, glucose intolerance, and type 2 diabetes. Causal mechanisms mediating this association are not well defined; however, augmented lipolysis in adipose might be involved. Here, we investigated the effect of acipimox treatment (lipolysis inhibitor) on glucose tolerance and insulin sensitivity in mice exposed to intermittent hypoxia (IH). C57BL6/J mice were exposed for 14 days to IH or control conditions. IH was created by decreasing the fraction of inspired oxygen from 20.9 to 6.5%, 60 times/h. Control exposure was air (fraction of inspired oxygen, 20.9%) delivered at an identical flow rate. Acipimox was provided in drinking water (0.5 g/ml) during exposures. After exposures, intraperitoneal insulin (0.5 IU/kg) and glucose (1 g/kg) tolerance tests were performed, and primary adipocytes were isolated for lipolysis experiments. IH elevated fasting glucose by 51% and worsened glucose tolerance and insulin sensitivity by 33 and 102%, respectively. In parallel, IH increased spontaneous lipolysis by 264%, and reduced epididymal fat mass by 15% and adipocyte size by 8%. Acipimox treatment prevented IH-induced lipolysis and increased epididymal fat mass and adipocyte size by 19 and 10%, respectively. Acipimox fully prevented IH-induced impairments in fasting glycemia, glucose tolerance, and insulin sensitivity. For all reported results, P less than 0.05 was considered significant. Augmented lipolysis contributes to insulin resistance and glucose intolerance observed in mice exposed to IH. Acipimox treatment ameliorated the metabolic consequences of IH and might represent a novel treatment option for patients with obstructive sleep apnea.
2nd Internal Medicine Department Vinohrady Teaching Hospital Prague Czech Republic
Center for Research on Diabetes Metabolism and Nutrition 3rd Faculty of Medicine
Center of Toxicology and Health Safety National Institute of Public Health Prague Czech Republic
Zobrazit více v PubMed
Punjabi NM. The epidemiology of adult obstructive sleep apnea. Proc Am Thorac Soc. 2008;5:136–143. PubMed PMC
Sánchez-de-la-Torre M, Campos-Rodriguez F, Barbé F. Obstructive sleep apnoea and cardiovascular disease. Lancet Respir Med. 2013;1:61–72. PubMed
Punjabi NM, Caffo BS, Goodwin JL, Gottlieb DJ, Newman AB, O’Connor GT, Rapoport DM, Redline S, Resnick HE, Robbins JA, et al. Sleep-disordered breathing and mortality: a prospective cohort study. PLoS Med. 2009;6:e1000132. PubMed PMC
Briançon-Marjollet A, Weiszenstein M, Henri M, Thomas A, Godin-Ribuot D, Polak J. The impact of sleep disorders on glucose metabolism: endocrine and molecular mechanisms. Diabetol Metab Syndr. 2015;7:25. PubMed PMC
Tasali E, Mokhlesi B, Van Cauter E. Obstructive sleep apnea and type 2 diabetes: interacting epidemics. Chest. 2008;133:496–506. PubMed
Polotsky VY, Li J, Punjabi NM, Rubin AE, Smith PL, Schwartz AR, O’Donnell CP. Intermittent hypoxia increases insulin resistance in genetically obese mice. J Physiol. 2003;552:253–264. PubMed PMC
Polak J, Shimoda LA, Drager LF, Undem C, McHugh H, Polotsky VY, Punjabi NM. Intermittent hypoxia impairs glucose homeostasis in C57BL6/J mice: partial improvement with cessation of the exposure. Sleep. 2013;36:1483–1490, 1490A–1490B. PubMed PMC
Yokoe T, Alonso LC, Romano LC, Rosa TC, O’Doherty RM, Garcia-Ocana A, Minoguchi K, O’Donnell CP. Intermittent hypoxia reverses the diurnal glucose rhythm and causes pancreatic β-cell replication in mice. J Physiol. 2008;586:899–911. PubMed PMC
Xu J, Long YS, Gozal D, Epstein PN. β-cell death and proliferation after intermittent hypoxia: role of oxidative stress. Free Radic Biol Med. 2009;46:783–790. PubMed
Fenik VB, Singletary T, Branconi JL, Davies RO, Kubin L. Glucoregulatory consequences and cardiorespiratory parameters in rats exposed to chronic-intermittent hypoxia: effects of the duration of exposure and losartan. Front Neurol. 2012;3:51. PubMed PMC
Lee EJ, Alonso LC, Stefanovski D, Strollo HC, Romano LC, Zou B, Singamsetty S, Yester KA, McGaffin KR, Garcia-Ocana A, et al. Time-dependent changes in glucose and insulin regulation during intermittent hypoxia and continuous hypoxia. Eur J Appl Physiol. 2013;113:467–478. PubMed PMC
Louis M, Punjabi NM. Effects of acute intermittent hypoxia on glucose metabolism in awake healthy volunteers. J Appl Physiol (1985) 2009;106:1538–1544. PubMed PMC
Boden G. Obesity and free fatty acids. Endocrinol Metab Clin North Am. 2008;37:635–646, viii–ix. PubMed PMC
Baldeweg SE, Golay A, Natali A, Balkau B, Del Prato S, Coppack SW European Group for the Study of Insulin Resistance (EGIR) Insulin resistance, lipid and fatty acid concentrations in 867 healthy Europeans. Eur J Clin Invest. 2000;30:45–52. PubMed
Frayn KN, Tan GD, Karpe F. Adipose tissue: a key target for diabetes pathophysiology and treatment? Horm Metab Res. 2007;39:739–742. PubMed
Yaney GC, Korchak HM, Corkey BE. Long-chain acyl CoA regulation of protein kinase C and fatty acid potentiation of glucose-stimulated insulin secretion in clonal β-cells. Endocrinology. 2000;141:1989–1998. PubMed
Ye J, Gao Z, Yin J, He Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab. 2007;293:E1118–E1128. PubMed
Trayhurn P, Alomar SY. Oxygen deprivation and the cellular response to hypoxia in adipocytes—perspectives on white and brown adipose tissues in obesity. Front Endocrinol (Lausanne) 2015;6:19. PubMed PMC
Reinke C, Bevans-Fonti S, Drager LF, Shin MK, Polotsky VY. Effects of different acute hypoxic regimens on tissue oxygen profiles and metabolic outcomes. J Appl Physiol (1985) 2011;111:881–890. PubMed PMC
Viswanadha S, Londos C. Determination of lipolysis in isolated primary adipocytes. Methods Mol Biol. 2008;456:299–306. PubMed
Iiyori N, Alonso LC, Li J, Sanders MH, Garcia-Ocana A, O’Doherty RM, Polotsky VY, O’Donnell CP. Intermittent hypoxia causes insulin resistance in lean mice independent of autonomic activity. Am J Respir Crit Care Med. 2007;175:851–857. PubMed PMC
Wang CY, Liao JK. A mouse model of diet-induced obesity and insulin resistance. Methods Mol Biol. 2012;821:421–433. PubMed PMC
Chen HC, Farese RV., Jr Turning WAT into BAT gets rid of fat. Nat Med. 2001;7:1102–1103. PubMed
Iiyori N, Alonso LC, Li J, Sanders MH, Garcia-Ocana A, O’Doherty RM, Polotsky VY, O’Donnell CP. Intermittent hypoxia causes insulin resistance in lean mice independent of autonomic activity. Am J Respir Crit Care Med. 2007;175:851–857. PubMed PMC
Jun JC, Shin MK, Devera R, Yao Q, Mesarwi O, Bevans-Fonti S, Polotsky VY. Intermittent hypoxia–induced glucose intolerance is abolished by α-adrenergic blockade or adrenal medullectomy. Am J Physiol Endocrinol Metab. 2014;307:E1073–E1083. PubMed PMC
Weaver TE, Grunstein RR. Adherence to continuous positive airway pressure therapy: the challenge to effective treatment. Proc Am Thorac Soc. 2008;5:173–178. PubMed PMC
Langin D. Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacol Res. 2006;53:482–491. PubMed
Hashimoto T, Yokokawa T, Endo Y, Iwanaka N, Higashida K, Taguchi S. Modest hypoxia significantly reduces triglyceride content and lipid droplet size in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2013;440:43–49. PubMed
Famulla S, Schlich R, Sell H, Eckel J. Differentiation of human adipocytes at physiological oxygen levels results in increased adiponectin secretion and isoproterenol-stimulated lipolysis. Adipocyte. 2012;1:132–181. PubMed PMC
Ryan S, Taylor CT, McNicholas WT. Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation. 2005;112:2660–2667. PubMed
Ryan S, McNicholas WT, Taylor CT. A critical role for p38 map kinase in NF-κB signaling during intermittent hypoxia/reoxygenation. Biochem Biophys Res Commun. 2007;355:728–733. PubMed
Shin MK, Han W, Bevans-Fonti S, Jun JC, Punjabi NM, Polotsky VY. The effect of adrenal medullectomy on metabolic responses to chronic intermittent hypoxia. Respir Physiol Neurobiol. 2014;203:60–67. PubMed PMC
Barceló A, Piérola J, de la Peña M, Esquinas C, Fuster A, Sanchez-de-la-Torre M, Carrera M, Alonso-Fernandez A, Ladaria A, Bosch M, et al. Free fatty acids and the metabolic syndrome in patients with obstructive sleep apnoea. Eur Respir J. 2011;37:1418–1423. PubMed
Mensink M, Blaak EE, van Baak MA, Wagenmakers AJ, Saris WH. Plasma free fatty acid uptake and oxidation are already diminished in subjects at high risk for developing type 2 diabetes. Diabetes. 2001;50:2548–2554. PubMed
Horscroft JA, Murray AJ. Skeletal muscle energy metabolism in environmental hypoxia: climbing towards consensus. Extrem Physiol Med. 2014;3:19. PubMed PMC
Liao Y, Hung MC. Physiological regulation of Akt activity and stability. Am J Transl Res. 2010;2:19–42. PubMed PMC
Stegeman H, Kaanders JH, Wheeler DL, van der Kogel AJ, Verheijen MM, Waaijer SJ, Iida M, Grénman R, Span PN, Bussink J. Activation of AKT by hypoxia: a potential target for hypoxic tumors of the head and neck. BMC Cancer. 2012;12:463. PubMed PMC
Deguchi JO, Yamazaki H, Aikawa E, Aikawa M. Chronic hypoxia activates the Akt and β-catenin pathways in human macrophages. Arterioscler Thromb Vasc Biol. 2009;29:1664–1670. PubMed
Soga T, Kamohara M, Takasaki J, Matsumoto S, Saito T, Ohishi T, Hiyama H, Matsuo A, Matsushime H, Furuichi K. Molecular identification of nicotinic acid receptor. Biochem Biophys Res Commun. 2003;303:364–369. PubMed
Miyoshi H, Perfield JW, II, Obin MS, Greenberg AS. Adipose triglyceride lipase regulates basal lipolysis and lipid droplet size in adipocytes. J Cell Biochem. 2008;105:1430–1436. PubMed PMC
Gracey AY, Lee TH, Higashi RM, Fan T. Hypoxia-induced mobilization of stored triglycerides in the euryoxic goby Gillichthys mirabilis. J Exp Biol. 2011;214:3005–3012. PubMed
Pagnon J, Matzaris M, Stark R, Meex RC, Macaulay SL, Brown W, O’Brien PE, Tiganis T, Watt MJ. Identification and functional characterization of protein kinase A phosphorylation sites in the major lipolytic protein, adipose triglyceride lipase. Endocrinology. 2012;153:4278–4289. PubMed
Xiong Y, Qu Z, Chen N, Gong H, Song M, Chen X, Du J, Xu C. The local corticotropin-releasing hormone receptor 2 signalling pathway partly mediates hypoxia-induced increases in lipolysis via the cAMP protein kinase A signalling pathway in white adipose tissue. Mol Cell Endocrinol. 2014;392:106–114. PubMed
Shaikh D, Zhou Q, Chen T, Ibe JC, Raj JU, Zhou G. cAMP-dependent protein kinase is essential for hypoxia-mediated epithelial mesenchymal transition, migration, and invasion in lung cancer cells. Cell Signal. 2012;24:2396–2406. PubMed
Torii S, Okamura N, Suzuki Y, Ishizawa T, Yasumoto K, Sogawa K. Cyclic AMP represses the hypoxic induction of hypoxia-inducible factors in PC12 cells. J Biochem. 2009;146:839–844. PubMed
Mansukhani MP, Kara T, Caples SM, Somers VK. Chemoreflexes, sleep apnea, and sympathetic dysregulation. Curr Hypertens Rep. 2014;16:476. PubMed PMC
Lohse MJ, Engelhardt S, Danner S, Böhm M. Mechanisms of β-adrenergic receptor desensitization: from molecular biology to heart failure. Basic Res Cardiol. 1996;91:29–34. PubMed
Frühbeck G, Gómez-Ambrosi J, Salvador J. Leptin-induced lipolysis opposes the tonic inhibition of endogenous adenosine in white adipocytes. FASEB J. 2001;15:333–340. PubMed
Wang B, Wood IS, Trayhurn P. Hypoxia induces leptin gene expression and secretion in human preadipocytes: differential effects of hypoxia on adipokine expression by preadipocytes. J Endocrinol. 2008;198:127–134. PubMed
Yasumasu T, Takahara K, Nakashima Y. Hypoxia inhibits leptin production by cultured rat adipocytes. Obes Res. 2002;10:128. PubMed
Carreras A, Zhang SX, Almendros I, Wang Y, Peris E, Qiao Z, Gozal D. Resveratrol attenuates intermittent hypoxia-induced macrophage migration to visceral white adipose tissue and insulin resistance in male mice. Endocrinology. 2015;156:437–443. PubMed PMC
Bajaj M, Suraamornkul S, Romanelli A, Cline GW, Mandarino LJ, Shulman GI, DeFronzo RA. Effect of a sustained reduction in plasma free fatty acid concentration on intramuscular long-chain fatty Acyl-CoAs and insulin action in type 2 diabetic patients. Diabetes. 2005;54:3148–3153. PubMed
Vaag AA, Beck-Nielsen H. Effects of prolonged acipimox treatment on glucose and lipid metabolism and on in vivo insulin sensitivity in patients with non-insulin dependent diabetes mellitus. Acta Endocrinol (Copenh) 1992;127:344–350. PubMed
Johansson SM, Lindgren E, Yang JN, Herling AW, Fredholm BB. Adenosine A1 receptors regulate lipolysis and lipogenesis in mouse adipose tissue-interactions with insulin. Eur J Pharmacol. 2008;597:92–101. PubMed
Nauck MA. Unraveling the science of incretin biology. Am J Med. 2009;122(6) suppl:S3–S10. PubMed
Muscle Lipid Oxidation Is Not Affected by Obstructive Sleep Apnea in Diabetes and Healthy Subjects