Muscle Lipid Oxidation Is Not Affected by Obstructive Sleep Apnea in Diabetes and Healthy Subjects

. 2023 Mar 10 ; 24 (6) : . [epub] 20230310

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36982383

Grantová podpora
AZV NU21-01-00259 Ministry of Health of the Czech Republic
Programme EXCELES, ID Project No. LX22NPO5104 National Institute for Research of Metabolic and Cardiovascular Diseases, European Union - Next Generation EU

The molecular mechanisms linking obstructive sleep apnea (OSA) with type 2 diabetes mellitus (T2DM) remain unclear. This study investigated the effect of OSA on skeletal muscle lipid oxidation in nondiabetic controls and in type 2 diabetes (T2DM) patients. Forty-four participants matched for age and adiposity were enrolled: nondiabetic controls (control, n = 14), nondiabetic patients with severe OSA (OSA, n = 9), T2DM patients with no OSA (T2DM, n = 10), and T2DM patients with severe OSA (T2DM + OSA, n = 11). A skeletal muscle biopsy was performed; gene and protein expressions were determined and lipid oxidation was analyzed. An intravenous glucose tolerance test was performed to investigate glucose homeostasis. No differences in lipid oxidation (178.2 ± 57.1, 161.7 ± 22.4, 169.3 ± 50.9, and 140.0 ± 24.1 pmol/min/mg for control, OSA, T2DM, and T2DM+OSA, respectively; p > 0.05) or gene and protein expressions were observed between the groups. The disposition index, acute insulin response to glucose, insulin resistance, plasma insulin, glucose, and HBA1C progressively worsened in the following order: control, OSA, T2DM, and T2DM + OSA (p for trend <0.05). No association was observed between the muscle lipid oxidation and the glucose metabolism variables. We conclude that severe OSA is not associated with reduced muscle lipid oxidation and that metabolic derangements in OSA are not mediated through impaired muscle lipid oxidation.

Zobrazit více v PubMed

Aronsohn R.S., Whitmore H., Van Cauter E., Tasali E. Impact of Untreated Obstructive Sleep Apnea on Glucose Control in Type 2 Diabetes. Am. J. Respir. Crit. Care Med. 2010;181:507–513. doi: 10.1164/rccm.200909-1423OC. PubMed DOI PMC

Westlake Katerina P.J. Screening for Obstructive Sleep Apnea in Type 2 Diabetes Patients—Questionnaires Are Not Good Enough. Front. Endocrinol. 2016;7:124. doi: 10.3389/fendo.2016.00124. PubMed DOI PMC

Punjabi N.M. Disorders of Glucose Metabolism in Sleep Apnea. J. Appl. Physiol. 2005;99:1998–2007. doi: 10.1152/japplphysiol.00695.2005. PubMed DOI

Punjabi N.M., Caffo B.S., Goodwin J.L., Gottlieb D.J., Newman A.B., O’Connor G.T., Rapoport D.M., Redline S., Resnick H.E., Robbins J.A., et al. Sleep-Disordered Breathing and Mortality: A Prospective Cohort Study. PLoS Med. 2009;6:e1000132. doi: 10.1371/journal.pmed.1000132. PubMed DOI PMC

Neubauer J.A. Invited Review: Physiological and Pathophysiological Responses to Intermittent Hypoxia. J. Appl. Physiol. (1985) 2001;90:1593–1599. doi: 10.1152/jappl.2001.90.4.1593. PubMed DOI

Tasali E., Mokhlesi B., Van Cauter E. Obstructive Sleep Apnea and Type 2 Diabetes. Chest. 2008;133:496–506. doi: 10.1378/chest.07-0828. PubMed DOI

Aurora R.N., Punjabi N.M. Obstructive Sleep Apnoea and Type 2 Diabetes Mellitus: A Bidirectional Association. Lancet Respir. Med. 2013;1:329–338. doi: 10.1016/S2213-2600(13)70039-0. PubMed DOI

Briancon-Marjollet A., Weiszenstein M., Henri M., Thomas A., Godin-Ribuot D., Polak J., Briançon-Marjollet A., Weiszenstein M., Henri M., Thomas A., et al. The Impact of Sleep Disorders on Glucose Metabolism: Endocrine and Molecular Mechanisms. Diabetol. Metab. Syndr. 2015;7:25. doi: 10.1186/s13098-015-0018-3. PubMed DOI PMC

Pavlacky J., Polak J. Technical Feasibility and Physiological Relevance of Hypoxic Cell Culture Models. Front. Endocrinol. 2020;11:57. doi: 10.3389/fendo.2020.00057. PubMed DOI PMC

Gu C.J., Yi H.H., Feng J., Zhang Z.G., Zhou J., Zhou L.N., Zhou J.P., Li M., Li Q.Y. Intermittent Hypoxia Disrupts Glucose Homeostasis in Liver Cells in an Insulin-Dependent and Independent Manner. Cell. Physiol. Biochem. 2018;47:1042–1050. doi: 10.1159/000490169. PubMed DOI

Ma L., Zhang J., Qiao Y., Sun X., Mao T., Lei S., Zheng Q., Liu Y. Intermittent Hypoxia Composite Abnormal Glucose Metabolism-Mediated Atherosclerosis In Vitro and In Vivo: The Role of SREBP-1. Oxid. Med. Cell. Longev. 2019;2019:4862760. doi: 10.1155/2019/4862760. PubMed DOI PMC

Musutova M., Weiszenstein M., Koc M., Polak J. Intermittent Hypoxia Stimulates Lipolysis, But Inhibits Differentiation and De Novo Lipogenesis in 3T3-L1 Cells. Metab. Syndr. Relat. Disord. 2020;18:146–153. doi: 10.1089/met.2019.0112. PubMed DOI

Polak J., Shimoda L.A., Drager L.F., Undem C., McHugh H., Polotsky V.Y., Punjabi N.M. Intermittent Hypoxia Impairs Glucose Homeostasis in C57BL6/J Mice: Partial Improvement with Cessation of the Exposure. Sleep. 2013;36:1483–1490. doi: 10.5665/sleep.3040. PubMed DOI PMC

Polotsky V.Y., Li J., Punjabi N.M., Rubin A.E., Smith P.L., Schwartz A.R., O’Donnell C.P. Intermittent Hypoxia Increases Insulin Resistance in Genetically Obese Mice. J. Physiol. 2003;552:253–264. doi: 10.1113/jphysiol.2003.048173. PubMed DOI PMC

Iiyori N., Alonso L.C., Li J., Sanders M.H., Garcia-Ocana A., O’Doherty R.M., Polotsky V.Y., O’Donnell C.P. Intermittent Hypoxia Causes Insulin Resistance in Lean Mice Independent of Autonomic Activity. Am. J. Respir. Crit. Care Med. 2007;175:851–857. doi: 10.1164/rccm.200610-1527OC. PubMed DOI PMC

Xu J., Long Y.-S., Gozal D., Epstein P.N. Beta-Cell Death and Proliferation after Intermittent Hypoxia: Role of Oxidative Stress. Free Radic. Biol. Med. 2009;46:783–790. doi: 10.1016/j.freeradbiomed.2008.11.026. PubMed DOI

Yokoe T., Alonso L.C., Romano L.C., Rosa T.C., O’Doherty R.M., Garcia-Ocana A., Minoguchi K., O’Donnell C.P. Intermittent Hypoxia Reverses the Diurnal Glucose Rhythm and Causes Pancreatic β-Cell Replication in Mice. J. Physiol. 2008;586:899–911. doi: 10.1113/jphysiol.2007.143586. PubMed DOI PMC

Shin M.-K., Yao Q., Jun J.C., Bevans-Fonti S., Yoo D.-Y., Han W., Mesarwi O., Richardson R., Fu Y.-Y., Pasricha P.J., et al. Carotid Body Denervation Prevents Fasting Hyperglycemia during Chronic Intermittent Hypoxia. J. Appl. Physiol. 2014;117:765–776. doi: 10.1152/japplphysiol.01133.2013. PubMed DOI PMC

Weiszenstein M., Shimoda L.A., Koc M., Seda O., Polak J. Inhibition of Lipolysis Ameliorates Diabetic Phenotype in a Mouse Model of Obstructive Sleep Apnea. Am. J. Respir. Cell. Mol. Biol. 2016;55:299–307. doi: 10.1165/rcmb.2015-0315OC. PubMed DOI PMC

Mishima T., Miner J.H., Morizane M., Stahl A., Sadovsky Y. The Expression and Function of Fatty Acid Transport Protein-2 and -4 in the Murine Placenta. PLoS ONE. 2011;6:e25865. doi: 10.1371/journal.pone.0025865. PubMed DOI PMC

Rafacho A., Gonçalves-Neto L.M., Ferreira F.B.D., Protzek A.O.P., Boschero A.C., Nunes E.A., Zoccal D.B. Glucose Homoeostasis in Rats Exposed to Acute Intermittent Hypoxia. Acta Physiol. 2013;209:77–89. doi: 10.1111/apha.12118. PubMed DOI

Louis M., Punjabi N.M. Effects of Acute Intermittent Hypoxia on Glucose Metabolism in Awake Healthy Volunteers. J. Appl. Physiol. 2009;106:1538–1544. doi: 10.1152/japplphysiol.91523.2008. PubMed DOI PMC

Newhouse L.P., Joyner M.J., Curry T.B., Laurenti M.C., Man C.D., Cobelli C., Vella A., Limberg J.K. Three Hours of Intermittent Hypoxia Increases Circulating Glucose Levels in Healthy Adults. Physiol. Rep. 2017;5:e13106. doi: 10.14814/phy2.13106. PubMed DOI PMC

Kent B.D., McNicholas W.T., Ryan S. Insulin Resistance, Glucose Intolerance and Diabetes Mellitus in Obstructive Sleep Apnoea. J. Thorac. Dis. 2015;7:1343–1357. doi: 10.3978/j.issn.2072-1439.2015.08.11. PubMed DOI PMC

Prabhakar N.R., Peng Y.-J., Nanduri J. Hypoxia-Inducible Factors and Obstructive Sleep Apnea. J. Clin. Investig. 2020;130:5042–5051. doi: 10.1172/JCI137560. PubMed DOI PMC

Chopra S., Rathore A., Younas H., Pham L.V., Gu C., Beselman A., Kim I.-Y., Wolfe R.R., Perin J., Polotsky V.Y., et al. Obstructive Sleep Apnea Dynamically Increases Nocturnal Plasma Free Fatty Acids, Glucose, and Cortisol During Sleep. J. Clin. Endocrinol. Metab. 2017;102:3172–3181. doi: 10.1210/jc.2017-00619. PubMed DOI PMC

Plihalova A., Bartakova H., Vasakova M., Gulati S., deGlisezinski I., Stich V., Polak J. The Effect of Hypoxia and Re-Oxygenation on Adipose Tissue Lipolysis in COPD Patients. Eur. Respir. J. 2016;48:1218–1220. doi: 10.1183/13993003.00602-2016. PubMed DOI

Kelley D.E., Goodpaster B., Wing R.R., Simoneau J.A. Skeletal Muscle Fatty Acid Metabolism in Association with Insulin Resistance, Obesity, and Weight Loss. Am. J. Physiol. 1999;277:E1130–E1141. doi: 10.1152/ajpendo.1999.277.6.E1130. PubMed DOI

Kelley D.E., Mandarino L.J. Fuel Selection in Human Skeletal Muscle in Insulin Resistance: A Reexamination. Diabetes. 2000;49:677–683. doi: 10.2337/diabetes.49.5.677. PubMed DOI

Boden G., Chen X., Capulong E., Mozzoli M. Effects of Free Fatty Acids on Gluconeogenesis and Autoregulation of Glucose Production in Type 2 Diabetes 1. Diabetes. 2001;50:810–816. doi: 10.2337/diabetes.50.4.810. PubMed DOI

Samuel V.T., Petersen K.F., Shulman G.I. Lipid-Induced Insulin Resistance: Unravelling the Mechanism. Lancet. 2010;375:2267–2277. doi: 10.1016/S0140-6736(10)60408-4. PubMed DOI PMC

Pereira S., Park E., Mori Y., Haber C.A., Han P., Uchida T., Stavar L., Oprescu A.I., Koulajian K., Ivovic A., et al. FFA-Induced Hepatic Insulin Resistance in Vivo Is Mediated by PKCδ, NADPH Oxidase, and Oxidative Stress. Am. J. Physiol. Endocrinol. Metab. 2014;307:E34–E46. doi: 10.1152/ajpendo.00436.2013. PubMed DOI PMC

Cnop M., Welsh N., Jonas J.-C., Jörns A., Lenzen S., Eizirik D.L. Mechanisms of Pancreatic Beta-Cell Death in Type 1 and Type 2 Diabetes: Many Differences, Few Similarities. Diabetes. 2005;54 Suppl 2:S97–S107. doi: 10.2337/diabetes.54.suppl_2.S97. PubMed DOI

Acosta-Montaño P., García-González V. Effects of Dietary Fatty Acids in Pancreatic Beta Cell Metabolism, Implications in Homeostasis. Nutrients. 2018;10:393. doi: 10.3390/nu10040393. PubMed DOI PMC

Mensink M., Blaak E.E., van Baak M.A., Wagenmakers A.J., Saris W.H. Plasma Free Fatty Acid Uptake and Oxidation Are Already Diminished in Subjects at High Risk for Developing Type 2 Diabetes. Diabetes. 2001;50:2548–2554. doi: 10.2337/diabetes.50.11.2548. PubMed DOI

Sobczak I.S., Blindauer C.A., Stewart A.J. Changes in Plasma Free Fatty Acids Associated with Type-2 Diabetes. Nutrients. 2019;11:2022. doi: 10.3390/nu11092022. PubMed DOI PMC

Longo N., Frigeni M., Pasquali M. Carnitine Transport and Fatty Acid Oxidation. Biochim. Biophys. Acta. 2016;1863:2422–2435. doi: 10.1016/j.bbamcr.2016.01.023. PubMed DOI PMC

Trinh M.D., Plihalova A., Gojda J., Westlake K., Spicka J., Lattova Z., Pretl M., Polak J. Obstructive Sleep Apnoea Increases Lipolysis and Deteriorates Glucose Homeostasis in Patients with Type 2 Diabetes Mellitus. Sci. Rep. 2021;11:3567. doi: 10.1038/s41598-021-83018-1. PubMed DOI PMC

Boden G. Fatty Acid-Induced Inflammation and Insulin Resistance in Skeletal Muscle and Liver. Curr. Diab. Rep. 2006;6:177–181. doi: 10.1007/s11892-006-0031-x. PubMed DOI

Delarue J., Magnan C. Free Fatty Acids and Insulin Resistance. Curr. Opin. Clin. Nutr. Metab. Care. 2007;10:142–148. doi: 10.1097/MCO.0b013e328042ba90. PubMed DOI

Boden G. Obesity and Free Fatty Acids. Endocrinol. Metab. Clin. North. Am. 2008;37:635–636ix. doi: 10.1016/j.ecl.2008.06.007. PubMed DOI PMC

Barcelo A., Pierola J., de la Pena M., Esquinas C., Fuster A., Sanchez-de-la-Torre M., Carrera M., Alonso-Fernandez A., Ladaria A., Bosch M., et al. Free Fatty Acids and the Metabolic Syndrome in Patients with Obstructive Sleep Apnoea. Eur. Respir. J. 2011;37:1418–1423. doi: 10.1183/09031936.00050410. PubMed DOI

Jun J.C., Drager L.F., Najjar S.S., Gottlieb S.S., Brown C.D., Smith P.L., Schwartz A.R., Polotsky V.Y. Effects of Sleep Apnea on Nocturnal Free Fatty Acids in Subjects with Heart Failure. Sleep. 2011;34:1207–1213. doi: 10.5665/SLEEP.1240. PubMed DOI PMC

Bonen A., Luiken J.J.F.P., Liu S., Dyck D.J., Kiens B., Kristiansen S., Turcotte L.P., van der Vusse G.J., Glatz J.F.C. Palmitate Transport and Fatty Acid Transporters in Red and White Muscles. Am. J. Physiol.-Endocrinol. Metab. 1998;275:E471–E478. doi: 10.1152/ajpendo.1998.275.3.E471. PubMed DOI

Habets D.D.J., Coumans W.A., Voshol P.J., den Boer M.A.M., Febbraio M., Bonen A., Glatz J.F.C., Luiken J.J.F.P. AMPK-Mediated Increase in Myocardial Long-Chain Fatty Acid Uptake Critically Depends on Sarcolemmal CD36. Biochem. Biophys. Res. Commun. 2007;355:204–210. doi: 10.1016/j.bbrc.2007.01.141. PubMed DOI

Holloway G.P., Luiken J.J.F.P., Glatz J.F.C., Spriet L.L., Bonen A. Contribution of FAT/CD36 to the Regulation of Skeletal Muscle Fatty Acid Oxidation: An Overview. Acta Physiol. 2008;194:293–309. doi: 10.1111/j.1748-1716.2008.01878.x. PubMed DOI

Chabowski A., Chatham J.C., Tandon N.N., Calles-Escandon J., Glatz J.F.C., Luiken J.J.F.P., Bonen A. Fatty Acid Transport and FAT/CD36 Are Increased in Red but Not in White Skeletal Muscle of ZDF Rats. Am. J. Physiol.-Endocrinol. Metab. 2006;291:E675–E682. doi: 10.1152/ajpendo.00096.2006. PubMed DOI

Bonen A., Parolin M.L., Steinberg G.R., Calles-Escandon J., Tandon N.N., Glatz J.F., Luiken J.J., Heigenhauser G.J., Dyck D.J. Triacylglycerol Accumulation in Human Obesity and Type 2 Diabetes Is Associated with Increased Rates of Skeletal Muscle Fatty Acid Transport and Increased Sarcolemmal FAT/CD36. FASEB J. 2004;18:1144–1146. doi: 10.1096/fj.03-1065fje. PubMed DOI

Ritov V.B., Menshikova E.V., He J., Ferrell R.E., Goodpaster B.H., Kelley D.E. Deficiency of Subsarcolemmal Mitochondria in Obesity and Type 2 Diabetes. Diabetes. 2005;54:8–14. doi: 10.2337/diabetes.54.1.8. PubMed DOI

Kim J.-Y., Hickner R.C., Cortright R.L., Dohm G.L., Houmard J.A. Lipid Oxidation Is Reduced in Obese Human Skeletal Muscle. Am. J. Physiol.-Endocrinol. Metab. 2000;279:E1039–E1044. doi: 10.1152/ajpendo.2000.279.5.E1039. PubMed DOI

Bruce C.R., Hoy A.J., Turner N., Watt M.J., Allen T.L., Carpenter K., Cooney G.J., Febbraio M.A., Kraegen E.W. Overexpression of Carnitine Palmitoyltransferase-1 in Skeletal Muscle Is Sufficient to Enhance Fatty Acid Oxidation and Improve High-Fat Diet–Induced Insulin Resistance. Diabetes. 2009;58:550–558. doi: 10.2337/db08-1078. PubMed DOI PMC

Bonen A., Luiken J.J.F.P., Glatz J.F.C. Regulation of Fatty Acid Transport and Membrane Transporters in Health and Disease. Mol. Cell. Biochem. 2002;239:181–192. doi: 10.1023/A:1020511125085. PubMed DOI

Park S.S., Seo Y.-K. Excess Accumulation of Lipid Impairs Insulin Sensitivity in Skeletal Muscle. Int. J. Mol. Sci. 2020;21:1949. doi: 10.3390/ijms21061949. PubMed DOI PMC

Gimeno R.E. Fatty Acid Transport Proteins. Curr. Opin. Lipidol. 2007;18:271–276. doi: 10.1097/MOL.0b013e3281338558. PubMed DOI

Musutova M., Elkalaf M., Klubickova N., Koc M., Povysil S., Rambousek J., Volckaert B., Duska F., Trinh M.D., Kalous M., et al. The Effect of Hypoxia and Metformin on Fatty Acid Uptake, Storage, and Oxidation in L6 Differentiated Myotubes. Front. Endocrinol. 2018;9:616. doi: 10.3389/fendo.2018.00616. PubMed DOI PMC

Reinke C., Bevans-Fonti S., Drager L.F., Shin M.K., Polotsky V.Y. Effects of Different Acute Hypoxic Regimens on Tissue Oxygen Profiles and Metabolic Outcomes. J. Appl. Physiol. (1985) 2011;111:881–890. doi: 10.1152/japplphysiol.00492.2011. PubMed DOI PMC

Horscroft J.A., Murray A.J. Skeletal Muscle Energy Metabolism in Environmental Hypoxia: Climbing towards Consensus. Extrem. Physiol. Med. 2014;3:19. doi: 10.1186/2046-7648-3-19. PubMed DOI PMC

Grocott M.P.W., Martin D.S., Levett D.Z.H., McMorrow R., Windsor J., Montgomery H.E. Arterial Blood Gases and Oxygen Content in Climbers on Mount Everest. New Engl. J. Med. 2009;360:140–149. doi: 10.1056/NEJMoa0801581. PubMed DOI

Vacek L., Dvorak A., Bechynska K., Kosek V., Elkalaf M., Trinh M.D., Fiserova I., Pospisilova K., Slovakova L., Vitek L., et al. Hypoxia Induces Saturated Fatty Acids Accumulation and Reduces Unsaturated Fatty Acids Independently of Reverse Tricarboxylic Acid Cycle in L6 Myotubes. Front. Endocrinol. 2022;13:663625. doi: 10.3389/fendo.2022.663625. PubMed DOI PMC

Mylonis I., Simos G., Paraskeva E. Hypoxia-Inducible Factors and the Regulation of Lipid Metabolism. Cells. 2019;8:214. doi: 10.3390/cells8030214. PubMed DOI PMC

Koenig A.M., Koehler U., Hildebrandt O., Schwarzbach H., Hannemann L., Boneberg R., Heverhagen J.T., Mahnken A.H., Keller M., Kann P.H., et al. The Effect of Obstructive Sleep Apnea and Continuous Positive Airway Pressure Therapy on Skeletal Muscle Lipid Content in Obese and Nonobese Men. J. Endocr. Soc. 2021;5:bvab082. doi: 10.1210/jendso/bvab082. PubMed DOI PMC

Heiling V.J., Miles J.M., Jensen M.D. How Valid Are Isotopic Measurements of Fatty Acid Oxidation? Am. J. Physiol. 1991;261:E572–E577. doi: 10.1152/ajpendo.1991.261.5.E572. PubMed DOI

Stefanovski D., Boston R.C., Punjabi N.M. Sleep-Disordered Breathing and Free Fatty Acid Metabolism. Chest. 2020;158:2155–2164. doi: 10.1016/j.chest.2020.05.600. PubMed DOI PMC

De Jonge L., Zhao X., Mattingly M.S., Zuber S.M., Piaggi P., Csako G., Cizza G. Poor Sleep Quality and Sleep Apnea Are Associated with Higher Resting Energy Expenditure in Obese Individuals with Short Sleep Duration. J. Clin. Endocrinol. Metab. 2012;97:2881–2889. doi: 10.1210/jc.2011-2858. PubMed DOI PMC

Wang Y., Gao W., Sun M., Chen B. Adherence to CPAP in Patients with Obstructive Sleep Apnea in a Chinese Population. Respir. Care. 2012;57:238–243. doi: 10.4187/respcare.01136. PubMed DOI

Westlake K., Dostalova V., Plihalova A., Pretl M., Polak J. The Clinical Impact of Systematic Screening for Obstructive Sleep Apnea in a Type 2 Diabetes Population—Adherence to the Screening-Diagnostic Process and the Acceptance and Adherence to the CPAP Therapy Compared to Regular Sleep Clinic Patients. Front. Endocrinol. 2018;9:714. doi: 10.3389/fendo.2018.00714. PubMed DOI PMC

Rotenberg B.W., Murariu D., Pang K.P. Trends in CPAP Adherence over Twenty Years of Data Collection: A Flattened Curve. J. Otolaryngol.-Head Neck Surg. 2016;45:43. doi: 10.1186/s40463-016-0156-0. PubMed DOI PMC

Jacques M., Kuang J., Bishop D.J., Yan X., Alvarez-Romero J., Munson F., Garnham A., Papadimitriou I., Voisin S., Eynon N. Mitochondrial Respiration Variability and Simulations in Human Skeletal Muscle: The Gene SMART Study. FASEB J. 2020;34:2978–2986. doi: 10.1096/fj.201901997RR. PubMed DOI PMC

Hughes M.C., Ramos S.V., Turnbull P.C., Nejatbakhsh A., Baechler B.L., Tahmasebi H., Laham R., Gurd B.J., Quadrilatero J., Kane D.A., et al. Mitochondrial Bioenergetics and Fiber Type Assessments in Microbiopsy vs. Bergstrom Percutaneous Sampling of Human Skeletal Muscle. Front. Physiol. 2015;6:360. doi: 10.3389/fphys.2015.00360. PubMed DOI PMC

Doerrier C., Garcia-Souza L.F., Krumschnabel G., Wohlfarter Y., Mészáros A.T., Gnaiger E. Mitochondrial Bioenergetics: Methods and Protocols. Springer; New York, NY, USA: 2018. High-Resolution FluoRespirometry and OXPHOS Protocols for Human Cells, Permeabilized Fibers from Small Biopsies of Muscle, and Isolated Mitochondria; pp. 31–70. PubMed

Samovski D., Jacome-Sosa M., Abumrad N.A. Fatty Acid Transport and Signaling: Mechanisms and Physiological Implications. Annu. Rev. Physiol. 2023;85:317–337. doi: 10.1146/annurev-physiol-032122-030352. PubMed DOI

Adeva-Andany M.M., Carneiro-Freire N., Seco-Filgueira M., Fernández-Fernández C., Mouriño-Bayolo D. Mitochondrial β-Oxidation of Saturated Fatty Acids in Humans. Mitochondrion. 2019;46:73–90. doi: 10.1016/j.mito.2018.02.009. PubMed DOI

Zinchuk A.V., Gentry M.J., Concato J., Yaggi H.K. Phenotypes in Obstructive Sleep Apnea: A Definition, Examples and Evolution of Approaches. Sleep Med. Rev. 2017;35:113–123. doi: 10.1016/j.smrv.2016.10.002. PubMed DOI PMC

Authors/Task Force Members. Rydén L., Grant P.J., Anker S.D., Berne C., Cosentino F., Danchin N., Deaton C., Escaned J., Hammes H.-P., et al. ESC Guidelines on Diabetes, Pre-Diabetes, and Cardiovascular Diseases Developed in Collaboration with the EASD. Eur. Heart J. 2013;34:3035–3087. doi: 10.1093/eurheartj/eht108. PubMed DOI

Boston R.C., Stefanovski D., Moate P.J., Sumner A.E., Watanabe R.M., Bergman R.N. MINMOD Millennium: A Computer Program to Calculate Glucose Effectiveness and Insulin Sensitivity from the Frequently Sampled Intravenous Glucose Tolerance Test. Diabetes Technol. Ther. 2003;5:1003–1015. doi: 10.1089/152091503322641060. PubMed DOI

Hayot M. Skeletal Muscle Microbiopsy: A Validation Study of a Minimally Invasive Technique. Eur. Respir. J. 2005;25:431–440. doi: 10.1183/09031936.05.00053404. PubMed DOI

Pecinová A., Drahota Z., Nůsková H., Pecina P., Houštěk J. Evaluation of Basic Mitochondrial Functions Using Rat Tissue Homogenates. Mitochondrion. 2011;11:722–728. doi: 10.1016/j.mito.2011.05.006. PubMed DOI

Ziak J., Krajcova A., Jiroutkova K., Nemcova V., Dzupa V., Duska F. Assessing the Function of Mitochondria in Cytosolic Context in Human Skeletal Muscle: Adopting High-Resolution Respirometry to Homogenate of Needle Biopsy Tissue Samples. Mitochondrion. 2015;21:106–112. doi: 10.1016/j.mito.2015.02.002. PubMed DOI

Larsen S., Kraunsøe R., Gram M., Gnaiger E., Helge J.W., Dela F. The Best Approach: Homogenization or Manual Permeabilization of Human Skeletal Muscle Fibers for Respirometry? Anal. Biochem. 2014;446:64–68. doi: 10.1016/j.ab.2013.10.023. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...