Alternative Glycerol Balance Strategies among Saccharomyces Species in Response to Winemaking Stress
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27064588
PubMed Central
PMC4814467
DOI
10.3389/fmicb.2016.00435
Knihovny.cz E-zdroje
- Klíčová slova
- Saccharomyces, glycerol, stress, winemaking, yeast,
- Publikační typ
- časopisecké články MeSH
Production and balance of glycerol is essential for the survival of yeast cells in certain stressful conditions as hyperosmotic or cold shock that occur during industrial processes as winemaking. These stress responses are well-known in S. cerevisiae, however, little is known in other phylogenetically close related Saccharomyces species associated with natural or fermentation environments such as S. uvarum, S. paradoxus or S. kudriavzevii. In this work we have investigated the expression of four genes (GPD1, GPD2, STL1, and FPS1) crucial in the glycerol pool balance in the four species with a biotechnological potential (S. cerevisiae; S. paradoxus; S. uvarum; and S. kudriavzevii), and the ability of strains to grow under osmotic and cold stresses. The results show different pattern and level of expression among the different species, especially for STL1. We also studied the function of Stl1 glycerol symporter in the survival to osmotic changes and cell growth capacity in winemaking environments. These experiments also revealed a different functionality of the glycerol transporters among the different species studied. All these data point to different strategies to handle glycerol accumulation in response to winemaking stresses as hyperosmotic or cold-hyperosmotic stress in the different species, with variable emphasis in the production, influx, or efflux of glycerol.
Zobrazit více v PubMed
Arroyo-López F. N., Pérez-Torrado R., Querol A., Barrio E. (2010). Modulation of the glycerol and ethanol syntheses in the yeast Saccharomyces kudriavzevii differs from that exhibited by Saccharomyces cerevisiae and their hybrid. Food Microbiol. 27, 628–637. 10.1016/j.fm.2010.02.001 PubMed DOI
Bely M., Rinaldi A., Dubourdieu D. (2003). Influence of assimilable nitrogen on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation. J. Biosci. Bioeng. 96, 507–512. 10.1016/S1389-1723(04)70141-3 PubMed DOI
Cherry J. M., Hong E. L., Amundsen C., Balakrishnan R., Binkley G., Chan E. T., et al. . (2012). Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res. 40, 700–705. 10.1093/nar/gkr1029 PubMed DOI PMC
Combina M., Pérez-Torrado R., Tronchoni J., Belloch C., Querol A. (2012). Genome-wide gene expression of a natural hybrid between Saccharomyces cerevisiae and S. kudriavzevii under enological conditions. Int. J. Food. Microbiol. 157, 340–345. 10.1016/j.ijfoodmicro.2012.06.001 PubMed DOI
de Nadal E., Ammerer G., Posas F. (2011). Controlling gene expression in response to stress. Nat. Rev. Genet. 12, 833–845. 10.1038/nrg3055 PubMed DOI
Demuyter C., Lollier M., Legras J.-L., Le Jeune C. (2004). Predominance of Saccharomyces uvarum during spontaneous alcoholic fermentation, for three consecutive years, in an Alsatian winery. J. Appl. Microbiol. 97, 1140–1148. 10.1111/j.1365-2672.2004.02394.x PubMed DOI
Duskova M., Borovikova D., Herynkova P., Rapoport A., Sychrova H. (2015b). The role of glycerol transporters in yeast cells in various physiological and stress conditions. FEMS Microbiol. Lett. 362, 1–8. 10.1093/femsle/fnu041 PubMed DOI
Dušková M., Ferreira C., Lucas C., Sychrová H. (2015a). Two glycerol uptake systems contribute to the high osmotolerance of Zygosaccharomyces rouxii. Mol. Microbiol. 97, 541–559. 10.1111/mmi.13048 PubMed DOI
Gamero A., Tronchoni J., Querol A., Belloch C. (2013). Production of aroma compounds by cryotolerant Saccharomyces species and hybrids at low and moderate fermentation temperatures. J. Appl. Microbiol. 114, 1405–1414. 10.1111/jam.12126 PubMed DOI
Gasch A. P., Spellman P. T., Kao C. M., Carmel-Harel O., Eisen M. B., Storz G., et al. . (2000). Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257. 10.1091/mbc.11.12.4241 PubMed DOI PMC
Gonzalez S. S., Gallo L., Climent M. A., Barrio E., Querol A. (2007). Enological characterization of natural hybrids from Saccharomyces cerevisiae and S. kudriavzevii. Int. J. Food Microbiol. 116, 11–18. 10.1016/j.ijfoodmicro.2006.10.047 PubMed DOI
Hohmann S., Krantz M., Nordlander B. (2007). Yeast osmoregulation. Methods Enzymol. 428, 29–45. 10.1016/S0076-6879(07)28002-4 PubMed DOI
Hubmann G., Guillouet S., Nevoigt E. (2011). Gpd1 and Gpd2 fine-tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 77, 5857–5867. 10.1128/AEM.05338-11 PubMed DOI PMC
Kinclová O., Ramos J., Potier S., Sychrová H. (2001). Functional study of the Saccharomyces cerevisiae Nha1p C-terminus. Mol. Microbiol. 40, 656–668. 10.1046/j.1365-2958.2001.02412.x PubMed DOI
Lages F., Silva-Graça M., Lucas C. (1999). Active glycerol uptake is a mechanism underlying halotolerance in yeasts: a study of 42 species. Microbiol. 145, 2577–2585. 10.1099/00221287-145-9-2577 PubMed DOI
Landry C. R., Townsend J. P., Hartl D. L., Cavalieri D. (2006). Ecological and evolutionary genomics of Saccharomyces cerevisiae. Mol. Ecol. 15, 575–591. 10.1111/j.1365-294X.2006.02778.x PubMed DOI
Lapidot M., Pilpel Y., Gilad Y., Falcovitz A., Sharon D., Haaf T., et al. . (2001). Mouse-human orthology relationships in an olfactory receptor gene cluster. Genomics 71, 296–306 10.1006/geno.2000.6431 PubMed DOI
Le Jeune C., Lollier M., Demuyter C., Erny C., Legras J. L., et al. . (2007). Characterization of natural hybrids of Saccharomyces cerevisiae and Saccharomyces bayanus var. uvarum. FEMS Yeast Res. 7, 540–549. 10.1111/j.1567-1364.2007.00207.x PubMed DOI
Lopes C. A., Barrio E., Querol A. (2010). Natural hybrids of S. cerevisiae x S. kudriavzevii share alleles with European wild populations of Saccharomyces kudriavzevii. FEMS Yeast Res. 10, 412–421. 10.1111/j.1567-1364.2010.00614.x PubMed DOI
López-Malo M., Querol A., Guillamon J. M. (2013). Metabolomic comparison of Saccharomyces cerevisiae and the cryotolerant species S. bayanus var. uvarum and S. kudriavzevii during wine fermentation at low temperature. PLoS ONE 8:e60135. 10.1371/journal.pone.0060135 PubMed DOI PMC
Luyten K., Albertyn J., Skibbe W. F., Prior B. A., Ramos J., Thevelein J. M., et al. . (1995). Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J. 14, 1360–1371. PubMed PMC
Miura F., Kawaguchi N., Yoshida M., Uematsu C., Kito K., Sakaki Y., et al. . (2008). Absolute quantification of the budding yeast transcriptome by means of competitive PCR between genomic and complementary DNAs. BMC Genomics 9:574. 10.1186/1471-2164-9-574 PubMed DOI PMC
Naumov G. I., Naumova E. S., Antunovics A., Sipiczki M. (2002). Saccharomyces bayanus var. uvarum in Tokaj wine-making of Slovakia and Hungary. Appl. Microbiol. Biotechnol. 59, 727–730. 10.1007/s00253-002-1077-6 PubMed DOI
Oliveira B. M., Barrio E., Querol A., Pérez-Torrado R. (2014). Enhanced enzymatic activity of glycerol-3-phosphate dehydrogenase from the cryophilic Saccharomyces kudriavzevii. PLoS ONE 9:e87290. 10.1371/journal.pone.0087290 PubMed DOI PMC
Panadero J., Pallotti C., Rodriguez-Vargas S., Randez-Gil F., Prieto J. A. (2006). A downshift in temperature activates the high osmolarity glycerol HOG pathway, which determines freeze tolerance in Saccharomyces cerevisiae. J. Biol. Chem. 281, 4638–4645. 10.1074/jbc.M512736200 PubMed DOI
Pérez-Torrado R., Gómez-Pastor R., Larsson C., Matallana E. (2009). Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth. Appl. Microbiol. Biotechnol. 81, 951–960. 10.1007/s00253-008-1722-9 PubMed DOI
Pérez-Torrado R., González S. S., Combina M., Barrio E., Querol A. (2015). Molecular and enological characterization of a natural Saccharomyces uvarum and Saccharomyces cerevisiae hybrid. Int. J. Food Microbiol. 204, 101–110. 10.1016/j.ijfoodmicro.2015.03.012 PubMed DOI
Peris D., Sylvester K., Libkind D., Gonçalves P., Sampaio J. P., Alexander W. G., et al. . (2014). Population structure and reticulate evolution of Saccharomyces eubayanus and its lager-brewing hybrids. Mol. Ecol. 23, 2031–2045. 10.1111/mec.12702 PubMed DOI
Petelenz-Kurdziel E., Kuehn C., Nordlander B., Klein D., Hong K. K., Jacobson T., et al. . (2013). Quantitative analysis of glycerol accumulation, glycolysis and growth under hyper osmotic stress. PLoS Comput. Biol. 9:e1003084. 10.1371/journal.pcbi.1003084 PubMed DOI PMC
Pretorius I. S., Curtin C. D., Chambers P. J. (2012). The winemaker's bug: from ancient wisdom to opening new vistas with frontier yeast science. Bioeng. Bugs. 3, 147–156. 10.4161/bbug.19687 PubMed DOI PMC
Querol A., Barrio E., Ramón D. (1994). Population dynamics of natural Saccharomyces strains during wine fermentation. Int. J. Food Microbiol. 21, 315–323. 10.1016/0168-1605(94)90061-2 PubMed DOI
Redžepović S., Orlić S., Sikora S., Majdak A., Pretorius I. S. (2002). Identification and characterization of Saccharomyces cerevisiae and Saccharomyces paradoxus strains isolated from Croatian vineyards. Lett. Appl. Microbiol. 35, 305–310. 10.1046/j.1472-765X.2002.01181.x PubMed DOI
Rementeria A., Rodriguez J. A., Cadaval A., Amenabar R., Muguruza J. R., Hernando F. L., et al. . (2003). Yeast associated with spontaneous fermentations of white wines from ‘Txakoli de Bizkaia’ region Basque Country, North Spain. Int. J. Food Microbiol. 86, 201–207. 10.1016/S0168-1605(03)00289-7 PubMed DOI
Remize F., Barnavon L., Dequin S. (2001). Glycerol export and glycerol-3-phosphate dehydrogenase, but not glycerol phosphatase, are rate limiting for glycerol production in Saccharomyces cerevisiae. Metab. Eng. 3, 301–312. 10.1006/mben.2001.0197 PubMed DOI
Starovoytova A. N., Sorokin M. I., Sokolov S. S., Severin F. F., Knorre D. A. (2013). Mitochondrial signaling in Saccharomyces cerevisiae pseudohyphae formation induced by butanol. FEMS Yeast Res. 13, 367–374. 10.1111/1567-1364.12039 PubMed DOI
Tronchoni J., Gamero A., Arroyo-López F. N., Barrio E., Querol A. (2009). Differences in the glucose and fructose consumption profiles in diverse Saccharomyces wine species and their hybrids during grape juice fermentation. Int. J. Food Microbiol. 134, 237–243. 10.1016/j.ijfoodmicro.2009.07.004 PubMed DOI
Tronchoni J., Medina V., Guillamón J. M., Querol A., Pérez-Torrado R. (2014). Transcriptomics of cryophilic Saccharomyces kudriavzevii reveals the key role of gene translation efficiency in cold stress adaptations. BMC Genomics 15:432. 10.1186/1471-2164-15-432 PubMed DOI PMC
Tronchoni J., Rozès N., Querol A., Guillamón J. M. (2012). Lipid composition of wine strains of Saccharomyces kudriavzevii and Saccharomyces cerevisiae grown at low temperature. Int. J. Food Microbiol. 155, 191–198. 10.1016/j.ijfoodmicro.2012.02.004 PubMed DOI
Tulha J., Lima A., Lucas C., Ferreira C. (2010). Saccharomyces cerevisiae glycerol/H+ symporter Stl1p is essential for cold/near-freeze and freeze stress adaptation. A simple recipe with high biotechnological potential is given. Microb. Cell Fact. 9:82. 10.1186/1475-2859-9-82 PubMed DOI PMC
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepem A., et al. . (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3:research0034.1. 10.1186/gb-2002-3-7-research0034 PubMed DOI PMC
Wei N., Xu H., Kim S. R., Jin Y. S. (2013). Deletion of FPS1, encoding aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces cerevisiae. Appl. Environ. Microbiol. 79, 3193–3201. 10.1128/AEM.00490-13 PubMed DOI PMC
Wimalasena T. T., Greetham D., Marvin M. E., Liti G., Chandelia Y., Hart A., et al. . (2014). Phenotypic characterisation of Saccharomyces spp. yeast for tolerance to stresses encountered during fermentation of lignocellulosic residues to produce bioethanol. Microb. Cell Fact. 13:47. 10.1186/1475-2859-13-47 PubMed DOI PMC