Sub-milliSievert ultralow-dose CT colonography with iterative model reconstruction technique

. 2016 ; 4 () : e1883. [epub] 20160331

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27069813

Purpose. The purpose of this study was to evaluate the technical and diagnostic performance of sub-milliSievert ultralow-dose (ULD) CT colonograpy (CTC) in the detection of colonic and extracolonic lesions. Materials and Methods. CTC with standard dose (SD) and ULD acquisitions of 64 matched patients, half of them with colonic findings, were reconstructed with filtered back projection (FBP), hybrid (HIR) and iterative model reconstruction techniques (IMR). Image noise in six colonic segments, in the left psoas muscle and aorta were measured. Image quality of the left adrenal gland and of the colon in the endoscopic and 2D view was rated on a five point Likert scale by two observers, who also completed the reading of CTC for colonic and extracolonic findings. Results. The mean radiation dose estimate was 4.1 ± 1.4 mSv for SD and 0.86 ± 0.17 mSv for ULD for both positions (p < 0.0001). In ULD-IMR, SD-IMR and SD-HIR, the endoluminal noise was decreased in all colonic segments compared to SD-FBP (p < 0.001). There were 27 small (6-9 mm) and 17 large (≥10 mm) colonic lesions that were classified as sessile polyps (n = 38), flat lesions (n = 3), or as a mass (n = 3). Per patient sensitivity and specificity were 0.82 and 0.93 for ULD-FBP, 0.97 and 0.97 for ULD-HIR, 0.97 and 1.0 for ULD-IMR. Per polyp sensitivity was 0.84 for ULD-FBP, 0.98 for ULD-HIR, 0.98 for ULD-IMR. Significantly less extracolonic findings were detected in ULD-FBP and ULD-HIR, but in the E4 category by C-RADS (potentially important findings), the detection was similar. Conclusion. Both HIR and IMR are suitable for sub-milliSievert ULD CTC without sacrificing diagnostic performance of the study.

Zobrazit více v PubMed

Albert JM. Radiation risk from CT: implications for cancer screening. American Journal of Roentgenology. 2013;201:W81–W87. doi: 10.2214/AJR.12.9226. PubMed DOI

Badiani S, Tomas-Hernandez S, Karandikar S, Roy-Choudhury S. Extracolonic findings (ECF) on CT colonography (CTC) in patients presenting with colorectal symptoms. Acta Radiologica. 2013;54:851–862. doi: 10.1177/0284185113486371. PubMed DOI

Brenner DJ, Georgsson MA. Mass screening with CT colonography: should the radiation exposure be of concern? Gastroenterology. 2005;129:328–337. doi: 10.1053/j.gastro.2005.05.021. PubMed DOI

Chang KJ, Yee J. Dose reduction methods for CT colonography. Abdominal Imaging. 2013;38:224–232. doi: 10.1007/s00261-012-9968-1. PubMed DOI

Choi J-I, Kim SH, Kim SH, Park H-S, Lee JM, Lee JY, Han JK, Choi BI. Comparison of accuracy and time-efficiency of CT colonography between conventional and panoramic 3D interpretation methods: an anthropomorphic phantom study. European Journal of Radiology. 2011;80:e68–e75. doi: 10.1016/j.ejrad.2010.08.022. PubMed DOI

Christner JA, Braun NN, Jacobsen MC, Carter RE, Kofler JM, McCollough CH. Size-specific dose estimates for adult patients at CT of the torso. Radiology. 2012;265:841–847. doi: 10.1148/radiol.12112365. PubMed DOI

Christner JA, Kofler JM, McCollough CH. Estimating effective dose for CT using dose–length product compared with using organ doses: consequences of adopting international commission on radiological protection publication 103 or dual-energy scanning. American Journal of Roentgenology. 2010;194:881–889. doi: 10.2214/AJR.09.3462. PubMed DOI

Cohnen M, Vogt C, Beck A, Andersen K, Heinen W, Vom Dahl S, Aurich V, Haeussinger D, Moedder U. Feasibility of MDCT Colonography in ultra-low-dose technique in the detection of colorectal lesions: comparison with high-resolution video colonoscopy. American Journal of Roentgenology. 2004;183:1355–1359. doi: 10.2214/ajr.183.5.1831355. PubMed DOI

De Gonzalez AB, Kim KP, Knudsen AB, Lansdorp-Vogelaar I, Rutter CM, Smith-Bindman R, Yee J, Kuntz KM, Van Ballegooijen M, Zauber AG, Berg CD. Radiation-related cancer risks from CT colonography screening: a risk-benefit analysis. American Journal of Roentgenology. 2011;196:816–823. doi: 10.2214/AJR.10.4907. PubMed DOI PMC

Fisichella VA, Båth M, Johnsson ÅA, Jäderling F, Bergsten T, Persson U, Mellingen K, Hellström M. Evaluation of image quality and lesion perception by human readers on 3D CT colonography: comparison of standard and low radiation dose. European Radiology. 2010;20:630–639. doi: 10.1007/s00330-009-1601-5. PubMed DOI

Flicek KT, Hara AK, Silva AC, Wu Q, Peter MB, Johnson CD. Reducing the radiation dose for CT colonography using adaptive statistical iterative reconstruction: a pilot study. American Journal of Roentgenology. 2010;195:126–131. doi: 10.2214/AJR.09.3855. PubMed DOI

Hara AK, Paden RG, Silva AC, Kujak JL, Lawder HJ, Pavlicek W. Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. American Journal of Roentgenology. 2009;193:764–771. doi: 10.2214/AJR.09.2397. PubMed DOI

Iannaccone R, Laghi A, Catalano C, Brink JA, Mangiapane F, Trenna S, Piacentini F, Passariello R. Detection of colorectal lesions: lower-dose multi–detector row helical CT colonography compared with conventional colonoscopy 1. Radiology. 2003;229:775–781. doi: 10.1148/radiol.2293021399. PubMed DOI

Lambert L, Danes J, Jahoda J, Masek M, Lisy J, Ourednicek P. Submilisievert ultralow-dose CT colonography using iterative reconstruction technique: a feasibility study. ACTA Radiologica. 2015a;56:517–525. doi: 10.1177/0284185114533683. PubMed DOI

Lambert L, Ourednicek P, Jahoda J, Lambertova A, Danes J. Model-based vs hybrid iterative reconstruction technique in ultralow-dose submillisievert CT colonography. British Journal of Radiology. 2015b;88 doi: 10.1259/bjr.20140667. 20140667. PubMed DOI PMC

Lefere P, Gryspeerdt S. CT colonography: avoiding traps and pitfalls. Insights Imaging. 2011;2:57–68. doi: 10.1007/s13244-010-0054-3. PubMed DOI PMC

Löve A, Olsson M-L, Siemund R, Stålhammar F, Björkman-Burtscher IM, Söderberg M. Six iterative reconstruction algorithms in brain CT: a phantom study on image quality at different radiation dose levels. British Journal of Radiology. 2013;86 doi: 10.1259/bjr.20130388. 20130388. PubMed DOI PMC

Lubner MG, Pooler BD, Kitchin DR, Tang J, Li K, Kim DH, Del Rio AM, Chen G-H, Pickhardt PJ. Sub-milliSievert (sub-mSv) CT colonography: a prospective comparison of image quality and polyp conspicuity at reduced-dose versus standard-dose imaging. European Radiology. 2015;25:2089–2102. doi: 10.1007/s00330-015-3603-9. PubMed DOI PMC

McCollough CH, Primak AN, Braun N, Kofler J, Yu L, Christner J. Strategies for reducing radiation dose in CT. Radiologic Clinics of North America. 2009;47:27–40. doi: 10.1016/j.rcl.2008.10.006. PubMed DOI PMC

Mehta D, Thompson R, Morton T, Dhanantwari A, Shefer E. Iterative model reconstruction: simultaneously lowered computed tomography radiation dose and improved image quality. Medical Physics International Journal. 2013;2:147–155.

Nagata K, Fujiwara M, Kanazawa H, Mogi T, Iida N, Mitsushima T, Lefor AT, Sugimoto H. Evaluation of dose reduction and image quality in CT colonography: comparison of low-dose CT with iterative reconstruction and routine-dose CT with filtered back projection. European Radiology. 2015;25:221–229. doi: 10.1007/s00330-014-3350-3. PubMed DOI

Näppi J, Yoshida H. Fully automated three-dimensional detection of polyps in fecal-tagging CT colonography. Academic Radiology. 2007;14:287–300. doi: 10.1016/j.acra.2006.11.007. PubMed DOI PMC

Pickhardt PJ. CT colonography for population screening: ready for prime time? Digestive Diseases and Sciences. 2015;60:647–659. doi: 10.1007/s10620-014-3454-2. PubMed DOI PMC

Pickhardt PJ, Choi JR, Hwang I, Butler JA, Puckett ML, Hildebrandt HA, Wong RK, Nugent PA, Mysliwiec PA, Schindler WR. Computed tomographic virtual colonoscopy to screen for colorectal neoplasia in asymptomatic adults. New England Journal of Medicine. 2003;349:2191–2200. doi: 10.1056/NEJMoa031618. PubMed DOI

Pickhardt PJ, Hassan C, Laghi A, Zullo A, Kim DH, Iafrate F, Morini S. Small and diminutive polyps detected at screening CT colonography: a decision analysis for referral to colonoscopy. American Journal of Roentgenology. 2008a;190:136–144. doi: 10.2214/AJR.07.2646. PubMed DOI

Pickhardt PJ, Hanson ME, Vanness DJ, Lo JY, Kim DH, Taylor AJ, Winter TC, Hinshaw JL. Unsuspected extracolonic findings at screening CT colonography: clinical and economic impact1. Radiology. 2008b;249:151–159. doi: 10.1148/radiol.2491072148. PubMed DOI

Pickhardt PJ, Kim DH. CT colonography: pitfalls in interpretation. Radiologic Clinics of North America. 2013;51:69–88. doi: 10.1016/j.rcl.2012.09.005. PubMed DOI PMC

Pickhardt PJ, Lubner MG, Kim DH, Tang J, Ruma JA, Del Rio AM, Chen G-H. Abdominal CT with model-based iterative reconstruction (MBIR): initial results of a prospective trial comparing ultralow-dose with standard-dose imaging. American Journal of Roentgenology. 2012;199:1266–1274. doi: 10.2214/AJR.12.9382. PubMed DOI PMC

Summers RM. Polyp size measurement at CT colonography: what do we know and what do we need to know? Radiology. 2010;255:707–720. doi: 10.1148/radiol.10090877. PubMed DOI PMC

Taylor S, Slater A, Honeyfield L, Burling D, Halligan S. CT colonography: effect of colonic distension on polyp measurement accuracy and agreement-in vitro study. Academic Radiology. 2006;13:850–859. doi: 10.1016/j.acra.2006.03.018. PubMed DOI

Yee J. Advances in CT colonography for colorectal cancer screening and diagnosis. Journal of Cancer. 2013;4:200–209. doi: 10.7150/jca.5858. PubMed DOI PMC

Zalis ME, Barish MA, Choi JR, Dachman AH, Fenlon HM, Ferrucci JT, Glick SN, Laghi A, Macari M, McFarland EG, Morrin MM, Pickhardt PJ, Soto J, Yee J. CT colonography reporting and data system: a consensus proposal. Radiology. 2005;236:3–9. doi: 10.1148/radiol.2361041926. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...