Model-based vs hybrid iterative reconstruction technique in ultralow-dose submillisievert CT colonography
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
25605346
PubMed Central
PMC4651260
DOI
10.1259/bjr.20140667
Knihovny.cz E-zdroje
- MeSH
- dávka záření MeSH
- kolonografie počítačovou tomografií metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- rentgenový obraz - interpretace počítačová metody MeSH
- senioři MeSH
- teoretické modely MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
OBJECTIVE: To compare image quality of different reconstruction techniques in submillisievert ultralow-dose CT colonography (CTC) and to correlate colonic findings with subsequent optical colonoscopy. METHODS: 58 patients underwent ultralow-dose CTC. The images were reconstructed with filtered back projection (FBP), hybrid iterative reconstruction (HIR) or model-based iterative reconstruction (MBIR) techniques. In each segment, endoluminal noise (expressed as standard deviation of endoluminal density) was measured and image quality was rated on a five-point Likert scale by two independent readers. Colonic lesions were evaluated in consensus and correlated with subsequent optical colonoscopy where possible. RESULTS: The estimated radiation dose was 0.41 ± 0.05 mSv for the supine and 0.42 ± 0.04 mSv for the prone acquisitions. In the endoluminal view, the image quality was rated better in HIR, whereas better scores were obtained in MBIR in the cross-sectional view, where the endoluminal noise was the lowest (p < 0.0001). Five (26%) polyps were not identified using both computer-aided detection and endoluminal inspection in FBP images vs only one (5%) in MBIR and none in HIR images. CONCLUSION: This study showed that in submillisievert ultralow-dose CTC, the image quality for the endoluminal view is better when HIR is used, whereas MBIR yields superior images for the cross-sectional view. The inferior quality of images reconstructed with FBP may result in decreased detection of colonic lesions. ADVANCES IN KNOWLEDGE: Radiation dose from CTC can be safely reduced <1 mSv for both positions when iterative reconstruction is used. MBIR provides better image quality in the cross-sectional view and HIR in the endoluminal view.
Zobrazit více v PubMed
Pickhardt PJ, Choi JR, Hwang I, Butler JA, Puckett ML, Hildebrandt HA, et al. . Computed tomographic virtual colonoscopy to screen for colorectal neoplasia in asymptomatic adults. N Engl J Med 2003; 349: 2191–200. PubMed
Johnson CD, Chen MH, Toledano AY, Heiken JP, Dachman A, Kuo MD, et al. . Accuracy of CT colonography for detection of large adenomas and cancers. N Engl J Med 2008; 359: 1207–17. doi: 10.1056/NEJMoa0800996 PubMed DOI PMC
Yee J, Weinstein S, Morgan T, Alore P, Aslam R. Advances in CT colonography for colorectal cancer screening and diagnosis. J Cancer 2013; 4: 200–9. doi: 10.7150/jca.5858 PubMed DOI PMC
Berrington de González A, Kim KP, Knudsen AB, Lansdorp-Vogelaar I, Rutter CM, Smith-Bindman R, et al. . Radiation-related cancer risks from CT colonography screening: a risk-benefit analysis. AJR Am J Roentgenol 2011; 196: 816–23. doi: 10.2214/AJR.10.4907 PubMed DOI PMC
Brenner DJ, Georgsson MA. Mass screening with CT colonography: should the radiation exposure be of concern? Gastroenterology 2005; 129: 328–37. PubMed
Iannaccone R, Laghi A, Catalano C, Brink JA, Mangiapane F, Trenna S, et al. . Detection of colorectal lesions: lower-dose multi-detector row helical CT colonography compared with conventional colonoscopy. Radiology 2003; 229: 775–81. PubMed
Flicek KT, Hara AK, Silva AC, Wu Q, Peter MB, Johnson CD. Reducing the radiation dose for CT colonography using adaptive statistical iterative reconstruction: a pilot study. AJR Am J Roentgenol 2010; 195: 126–31. doi: 10.2214/AJR.09.3855 PubMed DOI
Chang KJ, Caovan DB, Grand DJ, Huda W, Mayo-Smith WW. Reducing radiation dose at CT colonography: decreasing tube voltage to 100 kVp. Radiology 2013; 266: 791–800. doi: 10.1148/radiol.12120134 PubMed DOI
Chang KJ, Yee J. Dose reduction methods for CT colonography. Abdom Imaging 2013; 38: 224–32. doi: 10.1007/s00261-012-9968-1 PubMed DOI
Noël PB, Renger B, Fiebich M, Münzel D, Fingerle AA, Rummeny EJ, et al. . Does iterative reconstruction lower CT radiation dose: evaluation of 15,000 examinations. PLoS One 2013; 8: e81141. doi: 10.1371/journal.pone.0081141 PubMed DOI PMC
Mehta D, Thompson R, Morton T, Dhanantwari A, Shefer E. Iterative model reconstruction: simultaneously lowered computed tomography radiation dose and improved image quality. Med Phys Int J 2013; 2: 147–55.
Lambert L, Danes J, Jahoda J, Masek M, Lisy J, Ourednicek P. Submilisievert low-dose CT colonography using iterative reconstruction technique: a feasibility study. Acta Radiol May 2014. Epub ahead of print. PubMed
Cohnen M, Vogt C, Beck A, Andersen K, Heinen W, vom Dahl S, et al. . Feasibility of MDCT colonography in ultra-low-dose technique in the detection of colorectal lesions: comparison with high-resolution video colonoscopy. AJR Am J Roentgenol 2004; 183: 1355–9. PubMed
Boellaard TN, de Haan MC, Venema HW, Stoker J. Colon distension and scan protocol for CT-colonography: an overview. Eur J Radiol 2013; 82: 1144–58. doi: 10.1016/j.ejrad.2011.10.030 PubMed DOI
Fisichella VA, Båth M, Allansdotter Johnsson A, Jäderling F, Bergsten T, Persson U, et al. . Evaluation of image quality and lesion perception by human readers on 3D CT colonography: comparison of standard and low radiation dose. Eur Radiol 2010; 20: 630–9. doi: 10.1007/s00330-009-1601-5 PubMed DOI
Walker MJ, Olszewski ME, Desai MY, Halliburton SS, Flamm SD. New radiation dose saving technologies for 256-slice cardiac computed tomography angiography. Int J Cardiovasc Imaging 2009; 25: 189–99.
Branschofsky M, Vogt C, Aurich V, Beck A, Mödder U, Cohnen M. Feasibility of ultra-low-dose multi-detector-row CT-colonography: detection of artificial endoluminal lesions in an in-vitro-model with optimization of image quality using a noise reduction filter algorithm. Eur J Med Res 2006; 11: 13–19. PubMed
Willemink MJ, Schilham AM, Leiner T, Mali WP, de Jong PA, Budde RP. Iterative reconstruction does not substantially delay CT imaging in an emergency setting. Insights Imaging 2013; 4: 391–7. doi: 10.1007/s13244-013-0226-z PubMed DOI PMC
Hara AK, Paden RG, Silva AC, Kujak JL, Lawder HJ, Pavlicek W. Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. AJR Am J Roentgenol 2009; 193: 764–71. doi: 10.2214/AJR.09.2397 PubMed DOI
Park SH, Choi EK, Lee SS, Woo JY, Chung SY, Kim YJ, et al. . Linear polyp measurement at CT colonography: 3D endoluminal measurement with optimized surface-rendering threshold value and automated measurement. Radiology 2008; 246: 157–67. PubMed
Summers RM. Polyp size measurement at CT colonography: what do we know and what do we need to know? Radiology 2010; 255: 707–20. doi: 10.1148/radiol.10090877 PubMed DOI PMC
Zalis ME, Barish MA, Choi JR, Dachman AH, Fenlon HM, Ferrucci JT, et al. ; Working Group on Virtual Colonoscopy. CT colonography reporting and data system: a consensus proposal. Radiology 2005; 236: 3–9. PubMed
Näppi JJ, Imuta M, Yamashita Y, Yoshida H. Computer-aided detection for ultra-low-dose CT colonography. In: Yoshida H, Hawkes D, Vannier MW, eds. Abdominal imaging computational and clinical applications. Berlin, Germany: Springer Berlin Heidelberg; 2012. pp. 40–8.
Mang T, Bogoni L, Salganicoff M, Wolf M, Raykar V, Macari M, et al. . Computer-aided detection of colorectal polyps in CT colonography with and without fecal tagging: a stand-alone evaluation. Invest Radiol 2012; 47: 99–108. doi: 10.1097/RLI.0b013e31822b41e1 PubMed DOI
Robinson C, Halligan S, Iinuma G, Topping W, Punwani S, Honeyfield L, et al. . CT colonography: computer-assisted detection of colorectal cancer. Br J Radiol 2011; 84: 435–40. doi: 10.1259/bjr/17848340 PubMed DOI PMC
Slater A, Betts M, D'Costa H. Laxative-free CT colonography. Br J Radiol 2012; 85: e410–5. doi: 10.1259/bjr/54736800 PubMed DOI PMC
Halligan S, Altman DG, Taylor SA, Mallett S, Deeks JJ, Bartram CI, et al. . CT colonography in the detection of colorectal polyps and cancer: systematic review, meta-analysis, and proposed minimum data set for study level reporting. Radiology 2005; 237: 893–904. PubMed
Pickhardt PJ, Lubner MG, Kim DH, Tang J, Ruma JA, del Rio AM, et al. . Abdominal CT with model-based iterative reconstruction (MBIR): initial results of a prospective trial comparing ultralow-dose with standard-dose imaging. Am J Roentgenol 2012; 199: 1266–74. doi: 10.2214/AJR.12.9382 PubMed DOI PMC
Löve A, Olsson ML, Siemund R, Stålhammar F, Björkman-Burtscher IM, Söderberg M. Six iterative reconstruction algorithms in brain CT: a phantom study on image quality at different radiation dose levels. Br J Radiol 2013; 86: 20130388. doi: 10.1259/bjr.20130388 PubMed DOI PMC
CT colonography has low sensitivity but high specificity in the detection of internal hemorrhoids
Computed Tomography Colonography Phantom: Construction, Validation and Literature Review
Sub-milliSievert ultralow-dose CT colonography with iterative model reconstruction technique