Testing the island effect on phenotypic diversification: insights from the Hemidactylus geckos of the Socotra Archipelago
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27071837
PubMed Central
PMC4829864
DOI
10.1038/srep23729
PII: srep23729
Knihovny.cz E-zdroje
- MeSH
- fenotyp * MeSH
- genetická variace * MeSH
- ještěři anatomie a histologie klasifikace genetika MeSH
- molekulární evoluce * MeSH
- ostrovy * MeSH
- velikost těla MeSH
- vznik druhů (genetika) MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- ostrovy * MeSH
Island colonization is often assumed to trigger extreme levels of phenotypic diversification. Yet, empirical evidence suggests that it does not always so. In this study we test this hypothesis using a completely sampled mainland-island system, the arid clade of Hemidactylus, a group of geckos mainly distributed across Africa, Arabia and the Socotra Archipelago. To such purpose, we generated a new molecular phylogeny of the group on which we mapped body size and head proportions. We then explored whether island and continental taxa shared the same morphospace and differed in their disparities and tempos of evolution. Insular species produced the most extreme sizes of the radiation, involving accelerated rates of evolution and higher disparities compared with most (but not all) of the continental groups. In contrast, head proportions exhibited constant evolutionary rates across the radiation and similar disparities in islands compared with the continent. These results, although generally consistent with the notion that islands promote high morphological disparity, reveal at the same time a complex scenario in which different traits may experience different evolutionary patterns in the same mainland-island system and continental groups do not always present low levels of morphological diversification compared to insular groups.
Department of Zoology National Museum Prague Czech Republic
Institute of Evolutionary Biology Passeig Marítim de la Barceloneta 37 49 08003 Barcelona Spain
Zobrazit více v PubMed
Darwin C. On the origin of species by means of natural selection (1st edn) (Murray, London, 1859).
Losos J. B. & Ricklefs R. E. Adaptation and diversification on islands. Nature 457, 830–836 (2009). PubMed
Schluter D. The ecology of adaptive radiation (Oxford University Press, 2000).
Kuntner M. & Agnarsson I. Phylogeography of a successful aerial disperser: the golden orb spider Nephila on Indian Ocean islands. BMC Evol. Biol. 11, 119 (2011). PubMed PMC
Losos J. B. & Parent C. E. The speciation-area relationship. Theory Isl. Biogeogr Revisit. (eds JB Losos RE Ricklefs) 415–438 (2009).
Werner T. K. & Sherry T. W. Behavioral feeding specialization in Pinaroloxias inornata, the ‘Darwin’s finch’ of Cocos Island, Costa Rica. Proc. Natl. Acad. Sci. 84, 5506–5510 (1987). PubMed PMC
Arbogast B. S. et al. The origin and diversification of Galapagos mockingbirds. Evolution. 60, 370–382 (2006). PubMed
Pinto G., Mahler D. L., Harmon L. J. & Losos J. B. Testing the island effect in adaptive radiation: rates and patterns of morphological diversification in Caribbean and mainland Anolis lizards. Proc. R. Soc. London B Biol. Sci. 275, 2749–2757 (2008). PubMed PMC
Losos J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism. Am. Nat. 175, 623–639 (2010). PubMed
Liu J.-Q., Wang Y.-J., Wang A.-L., Hideaki O. & Abbott R. J. Radiation and diversification within the Ligularia-Cremanthodium-Parasenecio complex (Asteraceae) triggered by uplift of the Qinghai-Tibetan Plateau. Mol. Phylogenet. Evol. 38, 31–49 (2006). PubMed
Antonelli A., Nylander J. A. A., Persson C. & Sanmartín I. Tracing the impact of the Andean uplift on Neotropical plant evolution. Proc. Natl. Acad. Sci. 106, 9749–9754 (2009). PubMed PMC
Claramunt S., Derryberry E. P., Brumfield R. T. & Remsen J. V. Jr Ecological opportunity and diversification in a continental radiation of birds: climbing adaptations and cladogenesis in the Furnariidae. Am. Nat. 179, 649–666 (2012). PubMed
Garcia-Porta J. & Ord T. J. Key innovations and island colonization as engines of evolutionary diversification: a comparative test with the Australasian diplodactyloid geckos. J. Evol. Biol. 26, 2662–2680 (2013). PubMed
Carranza S. & Arnold E. N. Systematics, biogeography, and evolution of Hemidactylus geckos (Reptilia: Gekkonidae) elucidated using mitochondrial DNA sequences. Mol. Phylogenet. Evol. 38, 531–545 (2006). PubMed
Carranza S. & Arnold E. N. A review of the geckos of the genus Hemidactylus (Squamata: Gekkonidae) from Oman based on morphology, mitochondrial and nuclear data, with descriptions of eight new species. Zootaxa 3378, 1–95 (2012).
Gómez-Díaz E., Sindaco R., Pupin F., Fasola M. & Carranza S. Origin and in situ diversification in Hemidactylus geckos of the Socotra Archipelago. Mol. Ecol. 21, 4074–4092 (2012). PubMed
Šmíd J. et al. Out of Arabia: A complex biogeographic history of multiple vicariance and dispersal events in the gecko genus Hemidactylus (Reptilia: Gekkonidae). Plos One 8, e64018 (2013). PubMed PMC
Razzetti E. et al. Annotated checklist and distribution of the Socotran Archipelago Herpetofauna (Reptilia). Zootaxa 2826, 1–44 (2011).
Fournier M. et al. Arabia-Somalia plate kinematics, evolution of the Aden-Owen-Carlsberg triple junction, and opening of the Gulf of Aden. J. Geophys. Res. Solid Earth 115, 1–24 (2010).
Moravec J. et al. High genetic differentiation within the Hemidactylus turcicus complex (Reptilia: Gekkonidae) in the Levant, with comments on the phylogeny and systematics of the genus. Zootaxa 2894, 21–38 (2011).
Peters R. H. The ecological implications of body size (Cambridge University Press, 1986).
Brown J. H., Gillooly J. F., Allen A. P., Savage V. M. & West G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
Diamond J. M. Distributional Ecology of New Guinea Birds Recent ecological and biogeographical theories can be tested on the bird communities of New Guinea. Science 179, 759–769 (1973). PubMed
Price T. D., Helbig A. J. & Richman A. D. Evolution of breeding distributions in the Old World leaf warblers (genus Phylloscopus). Evolution 51, 552–561 (1997). PubMed
Raia P. & Meiri S. The island rule in large mammals: paleontology meets ecology. Evolution 60, 1731–1742 (2006). PubMed
Sagonas K. et al. Insularity affects head morphology, bite force and diet in a Mediterranean lizard. Biol. J. Linn. Soc. 112, 469–484 (2014).
Herrel A., Verstappen M. & De Vree F. Modulatory complexity of the feeding repertoire in scincid lizards. J. Comp. Physiol. A 184, 501–518 (1999).
Vanhooydonck B. & Van Damme R. Evolutionary relationships between body shape and habitat use in lacertid lizards. Evol. Ecol. Res. 1, 785–805 (1999).
Kaliontzopoulou A., Carretero M. A. & Llorente G. A. Head shape allometry and proximate causes of head sexual dimorphism in Podarcis lizards: joining linear and geometric morphometrics. Biol. J. Linn. Soc. 93, 111–124 (2008).
Hansen T. F., Pienaar J. & Orzack S. H. A comparative method for studying adaptation to a randomly evolving environment. Evolution. 62, 1965–1977 (2008). PubMed
Butler M. A. & King A. A. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am. Nat. 164, 683–695 (2004). PubMed
O’Meara B. C., Ané C., Sanderson M. J. & Wainwright P. C. Testing for different rates of continuous trait evolution using likelihood. Evolution. 60, 922–933 (2006). PubMed
Lomolino M. V. Body size evolution in insular vertebrates: generality of the island rule. J. Biogeogr. 32, 1683–1699 (2005).
Moen D. S., Smith S. A. & Wiens J. J. Community assembly through evolutionary diversification and dispersal in Middle American treefrogs. Evolution. 63, 3228–3247 (2009). PubMed
Harmon L. J., Melville J., Larson A. & Losos J. B. The role of geography and ecological opportunity in the diversification of day geckos (Phelsuma). Syst. Biol. 57, 562–573 (2008). PubMed
Meiri S. Evolution and ecology of lizard body sizes. Glob. Ecol. Biogeogr. 17, 724–734 (2008).
Yoder J. B. et al. Ecological opportunity and the origin of adaptive radiations. J. Evol. Biol. 23, 1581–1596 (2010). PubMed
Meiri S., Raia P. & Phillimore A. B. Slaying dragons: limited evidence for unusual body size evolution on islands. J. Biogeogr. 38, 89–100 (2011).
Bauer A. M., Jackman T. R., Sadlier R. A. & Whitaker A. H. Revision of the giant geckos of New Caledonia (Reptilia: Diplodactylidae: Rhacodactylus). Zootaxa 3404, 1–52 (2012).
Itescu Y., Karraker N. E., Raia P., Pritchard P. C. H. & Meiri S. Is the island rule general? Turtles disagree. Glob. Ecol. Biogeogr. 23, 689–700 (2014).
McClain C. R., Durst P. A. P., Boyer A. G. & Francis C. D. Unravelling the determinants of insular body size shifts. Biol. Lett. 9, 20120989 (2013). PubMed PMC
Arnold E. N. Cranial kinesis in lizards, variations, uses and origins. In Evolutionary Biology 323–357 (Springer, 1998).
Filin I. & Ziv Y. New theory of insular evolution: unifying the loss of dispersability and body-mass change. Evol. Ecol. Res. 6, 115–124 (2004).
Millien V. Mammals evolve faster on smaller islands. Evolution. 65, 1935–1944 (2011). PubMed
Mahler D. L., Revell L. J., Glor R. E. & Losos J. B. Ecological opportunity and the rate of morphological evolution in the diversification of Greater Antillean anoles. Evolution. 64, 2731–2745 (2010). PubMed
Buckley L. B. & Jetz W. Insularity and the determinants of lizard population density. Ecol. Lett. 10, 481–489 (2007). PubMed
Nosil P. Ecological speciation. (Oxford University Press, (2012).
Harmon L. & Gibson R. Multivariate phenotypic evolution among island and mainland populations of the ornate day gecko, Phelsuma ornata. Evolution 60, 2622–2632 (2006). PubMed
Losos J. B. Lizards in an evolutionary tree: ecology and adaptive radiation of anoles, (Univ of California Press, 2009).
Losos J. B. Convergence, adaptation, and constraint. Evolution 65, 1827–1840 (2011). PubMed
Revell L. J., Johnson M. A., Schulte J. A., Kolbe J. J. & Losos J. B. A phylogenetic test for adaptive convergence in rock-dwelling lizards. Evolution 61, 2898–2912 (2007). PubMed
Šmíd J. et al. Two newly recognized species of Hemidactylus (Squamata, Gekkonidae) from the Arabian Peninsula and Sinai, Egypt. Zookeys 355, 79–107 (2013). PubMed PMC
Katoh K. & Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9, 286–298 (2008). PubMed
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000). PubMed
Akaike H. In Selected Papers of Hirotugu Akaike 199–213 (Springer, 1998).
Posada D. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256 (2008). PubMed
Drummond A. J. & Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007). PubMed PMC
Revell L. J. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
Revell L. J. Phylogenetic signal and linear regression on species data. Methods Ecol. Evol. 1, 319–329 (2010).
Sidlauskas B. Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution. 62, 3135–3156 (2008). PubMed
Harmon L. J., Weir J. T., Brock C. D., Glor R. E. & Challenger W. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008). PubMed
Paradis E., Claude J. & Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004). PubMed
Beaulieu J. M., Jhwueng D.-C., Boettiger C. & O’Meara B. C. Modeling stabilizing selection: expanding the Ornstein-Uhlenbeck model of adaptive evolution. Evolution 66, 2369–2383 (2012). PubMed
Beaulieu J. M. & O’Meara B. OUwie: analysis of evolutionary rates in an OU framework. R Package version 1, 46 (2015). http://CRAN.R-project.org/package=OUwie
Boettiger C., Coop G. & Ralph P. Is your phylogeny informative? Measuring the power of comparative methods. Evolution 66, 2240–2251 (2012). PubMed PMC
Eastman J. M., Alfaro M. E., Joyce P., Hipp A. L. & Harmon L. J. A novel comparative method for identifying shifts in the rate of character evolution on trees. Evolution 65, 3578–3589 (2011). PubMed
Felsenstein J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985). PubMed
McPeek M. A. Testing hypotheses about evolutionary change on single branches of a phylogeny using evolutionary contrasts. Am. Nat. 145, 686–703 (1995).