A Reverse-Genetics Mutational Analysis of the Barley HvDWARF Gene Results in Identification of a Series of Alleles and Mutants with Short Stature of Various Degree and Disturbance in BR Biosynthesis Allowing a New Insight into the Process
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
27110778
PubMed Central
PMC4849053
DOI
10.3390/ijms17040600
PII: ijms17040600
Knihovny.cz E-resources
- Keywords
- barley, biosynthesis, brassinosteroids, mutant, reverse-genetics, semi-dwarf, splicing,
- MeSH
- Alleles MeSH
- Arabidopsis genetics MeSH
- Brassinosteroids biosynthesis MeSH
- Cholestanols metabolism MeSH
- Exons MeSH
- Phenotype MeSH
- Homozygote MeSH
- Introns MeSH
- Hordeum genetics physiology MeSH
- Molecular Sequence Data MeSH
- Mutagenesis, Site-Directed MeSH
- Reverse Transcriptase Polymerase Chain Reaction MeSH
- Arabidopsis Proteins chemistry genetics metabolism MeSH
- Plant Growth Regulators biosynthesis MeSH
- Plant Proteins chemistry genetics metabolism MeSH
- Amino Acid Sequence MeSH
- Sequence Alignment MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Brassinosteroids MeSH
- castasterone MeSH Browser
- Cholestanols MeSH
- Arabidopsis Proteins MeSH
- Plant Growth Regulators MeSH
- Plant Proteins MeSH
Brassinosteroids (BRs) are plant steroid hormones, regulating a broad range of physiological processes. The largest amount of data related with BR biosynthesis has been gathered in Arabidopsis thaliana, however understanding of this process is far less elucidated in monocot crops. Up to now, only four barley genes implicated in BR biosynthesis have been identified. Two of them, HvDWARF and HvBRD, encode BR-6-oxidases catalyzing biosynthesis of castasterone, but their relation is not yet understood. In the present study, the identification of the HvDWARF genomic sequence, its mutational and functional analysis and characterization of new mutants are reported. Various types of mutations located in different positions within functional domains were identified and characterized. Analysis of their impact on phenotype of the mutants was performed. The identified homozygous mutants show reduced height of various degree and disrupted skotomorphogenesis. Mutational analysis of the HvDWARF gene with the "reverse genetics" approach allowed for its detailed functional analysis at the level of protein functional domains. The HvDWARF gene function and mutants' phenotypes were also validated by measurement of endogenous BR concentration. These results allowed a new insight into the BR biosynthesis in barley.
See more in PubMed
Clouse S.D. The Arabidopsis Book. Volume 9. American Society of Plant Biologists; Rockville, MD, USA: 2011. Brassinosteroids; p. e0151. PubMed PMC
Vriet C., Russinova E., Reuzeau C. Boosting crop yields with plant steroids. Plant Cell. 2012;24:842–857. doi: 10.1105/tpc.111.094912. PubMed DOI PMC
Bajguz A., Tretyn A. The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry. 2003;62:1027–1046. doi: 10.1016/S0031-9422(02)00656-8. PubMed DOI
Fujioka S., Yokota T. Biosynthesis and metabolism of brassinosteroids. Annu. Rev. Plant Biol. 2003;54:137–164. doi: 10.1146/annurev.arplant.54.031902.134921. PubMed DOI
Shimada Y., Fujioka S., Miyauchi N., Kushiro M., Takatsuto S., Nomura T., Yokota T., Kamiya Y., Bishop G.J., Yoshida S. Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidation in brassinosteroid biosynthesis. Plant Physiol. 2001;126:770–779. doi: 10.1104/pp.126.2.770. PubMed DOI PMC
Ohnishi T., Godza B., Watanabe B., Fujioka S., Hategan L., Ide K., Shibata K., Yokota T., Szekeres M., Mizutani M. CYP90A1/CPD, a brassinosteroid biosynthetic cytochrome P450 of Arabidopsis, catalyzes C-3 oxidation. J. Biol. Chem. 2012;287:31551–31560. doi: 10.1074/jbc.M112.392720. PubMed DOI PMC
Li J., Jin H. Regulation of brassinosteroid signaling. Trends Plant Sci. 2006;12:37–41. doi: 10.1016/j.tplants.2006.11.002. PubMed DOI
Gruszka D. The brassinosteroid signaling pathway—New key players and interconnections with other signaling networks crucial for plant development and stress tolerance. Int. J. Mol. Sci. 2013;14:8740–8774. doi: 10.3390/ijms14058740. PubMed DOI PMC
Nakamura M., Satoh T., Tanaka S.I., Mochizuki N., Yokota T., Nagatani A. Activation of the cytochrome P450 gene, CYP72C1, reduces the levels of active brassinosteroids in vivo. J. Exp. Bot. 2005;56:833–840. doi: 10.1093/jxb/eri073. PubMed DOI
Poppenberger B., Fujioka S., Soeno K., George G.L., Vaistij F.E., Hiranuma S., Seto H., Takatsuto S., Adam G., Yoshida S., et al. The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. Proc. Natl. Acad. Sci. USA. 2005;102:15253–15258. doi: 10.1073/pnas.0504279102. PubMed DOI PMC
Tanabe S., Ashikari M., Fujioka S., Takatsuto S., Yoshida S., Yano M., Yoshimura A., Kitano H., Matsuoka M., Fujisawa Y., et al. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell. 2005;17:776–790. doi: 10.1105/tpc.104.024950. PubMed DOI PMC
Sakamoto T., Matsuoka M. Characterization of Constitutive Photomorphogenesis and Dwarfism homologs in rice (Oryza sativa L.) J. Plant Growth Regul. 2006;25:245–251. doi: 10.1007/s00344-006-0041-6. DOI
Yamamuro C., Ihara Y., Wu X., Noguchi T., Fujioka S., Takatsuto S., Ashikari M., Kitano H., Matsuoka M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell. 2000;12:1591–1605. doi: 10.1105/tpc.12.9.1591. PubMed DOI PMC
Nakamura A., Fujioka S., Sunohara H., Kamiya N., Hong Z., Inukai Y., Miura K., Takatsuto S., Yoshida S., Ueguchi-Tanaka M., et al. The role of OsBRI1 and its homologous genes OsBRL1 and OsBRL3 in rice. Plant Physiol. 2006;140:580–590. doi: 10.1104/pp.105.072330. PubMed DOI PMC
Chono M., Honda I., Zeniya H., Yoneyama K., Saisho D., Takeda K., Takatsuto S., Hoshino T., Watanabe Y. A semidwarf phenotype of barley UZU results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiol. 2003;133:1209–1219. doi: 10.1104/pp.103.026195. PubMed DOI PMC
Kim B.K., Fujioka S., Takatsuto S., Tsujimoto S., Choe S. Castasterone is a likely end product of brassinosteroid biosynthetic pathway in rice. Biochem. Biophys. Res. Commun. 2008;374:614–619. doi: 10.1016/j.bbrc.2008.07.073. PubMed DOI
Liu T., Zhang J., Wang M., Wang Z., Li G., Qu L., Wang G. Expression and functional analysis of ZmDWF4, an ortholog of Arabidopsis DWF4 from maize (Zea mays L.) Plant Cell Rep. 2007;26:2091–2099. doi: 10.1007/s00299-007-0418-4. PubMed DOI
Hartwig T., Chuck G.S., Fujioka S., Klempien A., Weizbauer R., Potluri D.P.V., Choe S., Johal G.S., Schulz B. Brassinosteroid control of sex determination in maize. Proc. Natl. Acad. Sci. USA. 2011;108:19814–19819. doi: 10.1073/pnas.1108359108. PubMed DOI PMC
Makarevitch I., Thompson A., Muehlbauer G.J., Springer N.M. Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS ONE. 2012;7:600. doi: 10.1371/journal.pone.0030798. PubMed DOI PMC
Kim T.W., Hwang J.Y., Kim Y.S., Joo S.H., Chang S.C., Lee J.S., Takatsuto S., Kim S.K. Arabidopsis CYP85A2, a cytochrome P450, mediates the Baeyer-Villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis. Plant Cell. 2005;17:2397–2412. doi: 10.1105/tpc.105.033738. PubMed DOI PMC
Bishop G., Nomura T., Yokota T., Montoya T., Castle J., Harrison K., Kushiro T., Kamiya Y., Yamaguchi S., Bancos S., et al. Dwarfism and cytochrome P450-mediated C-6 oxidation of plant steroid hormones. Biochem. Soc. Trans. 2006;34:1199–1201. doi: 10.1042/BST0341199. PubMed DOI
Nomura T., Kushiro T., Yokota T., Kamiya Y., Bishop G.J., Yamaguchi S. The last reaction producing brassinolide is catalyzed by cytochrome P450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis. J. Biol. Chem. 2005;280:17873–17879. doi: 10.1074/jbc.M414592200. PubMed DOI
Gruszka D., Szarejko I., Maluszynski M. Identification of barley DWARF gene involved in brassinosteroid synthesis. Plant Growth Regul. 2011;65:343–358. doi: 10.1007/s10725-011-9607-9. DOI
Dockter C., Gruszka D., Braumann I., Druka A., Druka I., Franckowiak J., Gough S.P., Janeczko A., Kurowska M., Lundqvist J., et al. Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the green revolution genetic toolkit. Plant Physiol. 2014;166:1912–1927. doi: 10.1104/pp.114.250738. PubMed DOI PMC
McCallum C.M., Comai L., Greene E.A., Henikoff S. Targeting Induced Local Lesions IN Genomes (TILLING) for plant functional genomics. Plant Physiol. 2000;123:439–442. doi: 10.1104/pp.123.2.439. PubMed DOI PMC
Kurowska M., Daszkowska-Golec A., Gruszka D., Marzec M., Szurman M., Szarejko I., Maluszynski M. TILLING—A shortcut in functional genomics. J. Appl. Genet. 2011;52:371–390. doi: 10.1007/s13353-011-0061-1. PubMed DOI PMC
Franckowiak J., Lundqvist U. Rules for nomenclature and gene symbolization in barley. Barley Genet. Newslett. 2004;34:132–136.
Hong Z., Ueguchi-Tanaka M., Shimizu-Sato S., Inukai Y., Fujioka S., Shimada Y., Takatsuto S., Agetsuma M., Yoshida S., Watanabe Y., et al. Loss-of-function of a rice brassinosteroid biosynthethic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J. 2002;32:495–508. doi: 10.1046/j.1365-313X.2002.01438.x. PubMed DOI
Mori M., Nomura T., Ooka H., Ishizaka M., Yokota T., Sugimoto K., Okabe K., Kajiwara H., Satoh K., Yamamoto K., et al. Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiol. 2002;130:1152–1161. doi: 10.1104/pp.007179. PubMed DOI PMC
Lodish H.F., Berk A., Matsudaira P., Kaiser C., Krieger M., Scott M., Zipursky L., Darnell J.E. Molecular Cell Biology. 5th ed. Scientific American Press; New York, NY, USA: 2004. pp. 112–115.
Till B., Zerr T., Comai L., Henikoff S. A protocol for TILLING and Ecotilling in plants and animals. Nat. Protoc. 2006;1:2465–2475. doi: 10.1038/nprot.2006.329. PubMed DOI
Spidey. [(accessed on 25 October 2014)]; Available online: http://ncbi.nlm.nih.gov/spidey/
Stamm S., Riethoven J.J., Le Texier V., Gopalakrishnan C., Kumanduri V., Tang Y., Barbosa-Morais N.L., Thanaraj T.A. ASD: A bioinformatics resource on alternative splicing. Nucleic Acids Res. 2006;34:46–55. doi: 10.1093/nar/gkj031. PubMed DOI PMC
ASD—Alternative Splicing tool. [(accessed on 30 October 2014)]. Available online: http://www.ebi.ac.uk/asd.
ClustalW. [(accessed on 15 November 2014)]. Available online: http://www.ebi.ac.uk/Tools/msa/clustalw2.
BOXSHADE. [(accessed on 15 November 2014)]. Available online: http://www.ch.embnet.org/software/BOX_form.html.
PSIPRED. [(accessed on 11 January 2015)]. Available online: http://bioinf.cs.ucl.ac.uk/psipred/
Schmittgen T.D., Livak K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73. PubMed DOI
Swaczynova J., Novak O., Hauserova E., Funksova K., Sísa M., Strnad M. New techniques for estimation of naturally occurring brassinosteroids. J. Plant Growth Regul. 2007;26:1–14. doi: 10.1007/s00344-006-0045-2. DOI
Janeczko A., Biesaga-Kościelniak J., Oklestkova J., Filek M., Dziurka M., Szarek-Łukaszewska G., Kościelniak J. Role of 24-epibrassinolide in wheat production: physiological effects and uptake. J. Agron. Crop. Sci. 2010;196:311–321. doi: 10.1111/j.1439-037X.2009.00413.x. DOI