Structural and Functional Characterization of the Major Allergen Amb a 11 from Short Ragweed Pollen

. 2016 Jun 17 ; 291 (25) : 13076-87. [epub] 20160419

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27129273
Odkazy

PubMed 27129273
PubMed Central PMC4933224
DOI 10.1074/jbc.m115.702001
PII: S0021-9258(20)39452-7
Knihovny.cz E-zdroje

Allergy to the short ragweed (Ambrosia artemisiifolia) pollen is a major health problem. The ragweed allergen repertoire has been recently expanded with the identification of Amb a 11, a new major allergen belonging to the cysteine protease family. To better characterize Amb a 11, a recombinant proform of the molecule with a preserved active site was produced in Escherichia coli, refolded, and processed in vitro into a mature enzyme. The enzymatic activity is revealed by maturation following an autocatalytic processing resulting in the cleavage of both N- and C-terminal propeptides. The 2.05-Å resolution crystal structure of pro-Amb a 11 shows an overall typical C1A cysteine protease fold with a network of molecular interactions between the N-terminal propeptide and the catalytic triad of the enzyme. The allergenicity of Amb a 11 was confirmed in a murine sensitization model, resulting in airway inflammation, production of serum IgEs, and induction of Th2 immune responses. Of note, inflammatory responses were higher with the mature form, demonstrating that the cysteine protease activity critically contributes to the allergenicity of the molecule. Collectively, our results clearly demonstrate that Amb a 11 is a bona fide cysteine protease exhibiting a strong allergenicity. As such, it should be considered as an important molecule for diagnosis and immunotherapy of ragweed pollen allergy.

Zobrazit více v PubMed

Arbes S. J. Jr., Gergen P. J., Elliott L., and Zeldin D. C. (2005) Prevalences of positive skin test responses to 10 common allergens in the US population: results from the third National Health and Nutrition Examination Survey. J. Allergy Clin. Immunol. 116, 377–383 PubMed

D'Amato G., Cecchi L., Bonini S., Nunes C., Annesi-Maesano I., Behrendt H., Liccardi G., Popov T., and van Cauwenberge P. (2007) Allergenic pollen and pollen allergy in Europe. Allergy 62, 976–990 PubMed

Burbach G. J., Heinzerling L. M., Röhnelt C., Bergmann K. C., Behrendt H., Zuberbier T., and GA(2)LEN study (2009) Ragweed sensitization in Europe—GA(2)LEN study suggests increasing prevalence. Allergy 64, 664–665 PubMed

Oswalt M. L., and Marshall G. D. (2008) Ragweed as an example of worldwide allergen expansion. Allergy Asthma Clin. Immunol. 4, 130–135 PubMed PMC

Smith M., Cecchi L., Skjøth C. A., Karrer G., and Šikoparija B. (2013) Common ragweed: a threat to environmental health in Europe. Environ. Int. 61, 115–126 PubMed

Bordas-Le Floch V., Groeme R., Chabre H., Baron-Bodo V., Nony E., Mascarell L., and Moingeon P. (2015) New insights into ragweed pollen allergens. Curr. Allergy Asthma Rep. 15, 63. PubMed

Asero R., Wopfner N., Gruber P., Gadermaier G., and Ferreira F. (2006) Artemisia and Ambrosia hypersensitivity: co-sensitization or co-recognition? Clin. Exp. Allergy 36, 658–665 PubMed

Gadermaier G., Wopfner N., Wallner M., Egger M., Didierlaurent A., Regl G., Aberger F., Lang R., Ferreira F., and Hawranek T. (2008) Array-based profiling of ragweed and mugwort pollen allergens. Allergy 63, 1543–1549 PubMed

Bouley J., Groeme R., Le Mignon M., Jain K., Chabre H., Bordas-Le Floch V., Couret M. N., Bussières L., Lautrette A., Naveau M., Baron-Bodo V., Lombardi V., Mascarell L., Batard T., Nony E., et al. (2015) Identification of the cysteine protease Amb a 11 as a novel major allergen from short ragweed. J. Allergy Clin. Immunol. 136, 1055–1064 PubMed

Bussières L., Bordas-Le Floch V., Bulder I., Chabre H., Nony E., Lautrette A., Berrouet C., Nguefeu Y., Horiot S., Baron-Bodo V., Van Overtvelt L., De Conti A. M., Schlegel A., Maguet N., Mouz N., et al. (2010) Recombinant fusion proteins assembling Der p 1 and Der p 2 allergens from Dermatophagoides pteronyssinus. Int. Arch. Allergy Immunol. 153, 141–151 PubMed

Choudhury D., Roy S., Chakrabarti C., Biswas S., and Dattagupta J. K. (2009) Production and recovery of recombinant propapain with high yield. Phytochemistry 70, 465–472 PubMed

Lees J. G., Smith B. R., Wien F., Miles A. J., and Wallace B. A. (2004) CDtool—an integrated software package for circular dichroism spectroscopic data processing, analysis, and archiving. Anal. Biochem. 332, 285–289 PubMed

van Stokkum I. H., Spoelder H. J., Bloemendal M., van Grondelle R., and Groen F. C. (1990) Estimation of protein secondary structure and error analysis from circular dichroism spectra. Anal. Biochem. 191, 110–118 PubMed

Whitmore L., and Wallace B. A. (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res. 32, W668–W673 PubMed PMC

Kabsch W. (2010) XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 PubMed PMC

Storoni L. C., McCoy A. J., and Read R. J. (2004) Likelihood-enhanced fast rotation functions. Acta Crystallogr. D Biol. Crystallogr. 60, 432–438 PubMed

Than M. E., Helm M., Simpson D. J., Lottspeich F., Huber R., and Gietl C. (2004) The 2.0 Å crystal structure and substrate specificity of the KDEL-tailed cysteine endopeptidase functioning in programmed cell death of Ricinus communis endosperm. J. Mol. Biol. 336, 1103–1116 PubMed

Roy S., Choudhury D., Aich P., Dattagupta J. K., and Biswas S. (2012) The structure of a thermostable mutant of pro-papain reveals its activation mechanism. Acta Crystallogr. D Biol. Crystallogr. 68, 1591–1603 PubMed

Bricogne G., Blanc E., Brandl M., Flensburg C., Keller P., Paciorek W., Roversi P., Sharff A., Smart O. S., Vonrhein C., and Womack T. O. (2011) BUSTER, version 2.1.0, Global Phasing Ltd., Cambridge, UK

Emsley P., and Cowtan K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 PubMed

Razafindratsita A., Saint-Lu N., Mascarell L., Berjont N., Bardon T., Betbeder D., Van Overtvelt L., and Moingeon P. (2007) Improvement of sublingual immunotherapy efficacy with a mucoadhesive allergen formulation. J. Allergy Clin. Immunol. 120, 278–285 PubMed

Novinec M., and Lenarčič B. (2013) Papain-like peptidases: structure, function, and evolution. BioMol Concepts 4, 287–308 PubMed

Meno K., Thorsted P. B., Ipsen H., Kristensen O., Larsen J. N., Spangfort M. D., Gajhede M., and Lund K. (2005) The crystal structure of recombinant proDer p 1, a major house dust mite proteolytic allergen. J. Immunol. 175, 3835–3845 PubMed

de Halleux S., Stura E., VanderElst L., Carlier V., Jacquemin M., and Saint-Remy J. M. (2006) Three-dimensional structure and IgE-binding properties of mature fully active Der p 1, a clinically relevant major allergen. J. Allergy Clin. Immunol. 117, 571–576 PubMed

Kamphuis I. G., Kalk K. H., Swarte M. B., and Drenth J. (1984) Structure of papain refined at 1.65 Å resolution. J. Mol. Biol. 179, 233–256 PubMed

Bordas-Le Floch V., Le Mignon M., Bouley J., Groeme R., Jain K., Baron-Bodo V., Nony E., Mascarell L., and Moingeon P. (2015) Identification of novel short ragweed pollen allergens using combined transcriptomic and immunoproteomic approaches. PLoS One 10, e0136258. PubMed PMC

Gadermaier G., Hauser M., and Ferreira F. (2014) Allergens of weed pollen: an overview on recombinant and natural molecules. Methods 66, 55–66 PubMed

Burtin D., Chabre H., Olagnier B., Didierlaurent A., Couret M. N., Comeau D., Wambre E., Laparra H., Van Overtvelt L., Montandon F., Batard T., Jonval V., Lorphelin A., Merle C., Berrouet C., Parry L., Gomord V., Van Ree R., and Moingeon P. (2009) Production of native and modified recombinant Der p 1 molecules in tobacco plants. Clin. Exp. Allergy 39, 760–770 PubMed

Brömme D., Nallaseth F. S., and Turk B. (2004) Production and activation of recombinant papain-like cysteine proteases. Methods 32, 199–206 PubMed

Turk V., Stoka V., Vasiljeva O., Renko M., Sun T., Turk B., and Turk D. (2012) Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim. Biophys. Acta 1824, 68–88 PubMed PMC

Gunawan H., Takai T., Ikeda S., Okumura K., and Ogawa H. (2008) Protease activity of allergenic pollen of cedar, cypress, juniper, birch and ragweed. Allergol. Int. 57, 83–91 PubMed

Gunawan H., Takai T., Kamijo S., Wang X. L., Ikeda S., Okumura K., and Ogawa H. (2008) Characterization of proteases, proteins, and eicosanoid-like substances in soluble extracts from allergenic pollen grains. Int. Arch. Allergy Immunol. 147, 276–288 PubMed

Wiederanders B. (2003) Structure-function relationships in class CA1 cysteine peptidase propeptides. Acta Biochim. Pol. 50, 691–713 PubMed

Kaulmann G., Palm G. J., Schilling K., Hilgenfeld R., and Wiederanders B. (2006) The crystal structure of a Cys25 → Ala mutant of human procathepsin S elucidates enzyme-prosequence interactions. Protein Sci. 15, 2619–2629 PubMed PMC

Stack C. M., Caffrey C. R., Donnelly S. M., Seshaadri A., Lowther J., Tort J. F., Collins P. R., Robinson M. W., Xu W., McKerrow J. H., Craik C. S., Geiger S. R., Marion R., Brinen L. S., and Dalton J. P. (2008) Structural and functional relationships in the virulence-associated cathepsin L proteases of the parasitic liver fluke, Fasciola hepatica. J. Biol. Chem. 283, 9896–9908 PubMed PMC

Sivaraman J., Lalumière M., Ménard R., and Cygler M. (1999) Crystal structure of wild-type human procathepsin K. Protein Sci. 8, 283–290 PubMed PMC

Groves M. R., Taylor M. A., Scott M., Cummings N. J., Pickersgill R. W., and Jenkins J. A. (1996) The prosequence of procaricain forms an α-helical domain that prevents access to the substrate-binding cleft. Structure 4, 1193–1203 PubMed

Chevigné A., Barumandzadeh R., Groslambert S., Cloes B., Dehareng D., Filée P., Marx J. C., Frère J. M., Matagne A., Jacquet A., and Galleni M. (2007) Relationship between propeptide pH unfolding and inhibitory ability during ProDer p 1 activation mechanism. J. Mol. Biol. 374, 170–185 PubMed

Demidyuk I. V., Shubin A. V., Gasanov E. V., and Kostrov S. V. (2010) Propeptides as modulators of functional activity of proteases. Biomol. Concepts 1, 305–322 PubMed

Eder J., and Fersht A. R. (1995) Pro-sequence-assisted protein folding. Mol. Microbiol. 16, 609–614 PubMed

Wiederanders B., Kaulmann G., and Schilling K. (2003) Functions of propeptide parts in cysteine proteases. Curr. Protein Pept. Sci. 4, 309–326 PubMed

Nandana V., Singh S., Singh A. N., and Dubey V. K. (2014) Procerain B, a cysteine protease from Calotropis procera, requires N-terminus pro-region for activity: cDNA cloning and expression with pro-sequence. Protein Expr. Purif. 103, 16–22 PubMed

Paul W., Amiss J., Try R., Praekelt U., Scott R., and Smith H. (1995) Correct processing of the kiwifruit protease actinidin in transgenic tobacco requires the presence of the C-terminal propeptide. Plant Physiol. 108, 261–268 PubMed PMC

Dutta S., Choudhury D., Dattagupta J. K., and Biswas S. (2011) C-terminal extension of a plant cysteine protease modulates proteolytic activity through a partial inhibitory mechanism. FEBS J. 278, 3012–3024 PubMed

Schmid M., Simpson D., Kalousek F., and Gietl C. (1998) A cysteine endopeptidase with a C-terminal KDEL motif isolated from castor bean endosperm is a marker enzyme for the ricinosome, a putative lytic compartment. Planta 206, 466–475 PubMed

Okamoto T., Minamikawa T., Edward G., Vakharia V., Herman E., and Okomoto T. (1999) Posttranslational removal of the carboxyl-terminal KDEL of the cysteine protease SH-EP occurs prior to maturation of the enzyme. J. Biol. Chem. 274, 11390–11398 PubMed

Deb R., Shakib F., Reid K., and Clark H. (2007) Major house dust mite allergens Dermatophagoides pteronyssinus 1 and Dermatophagoides farinae 1 degrade and inactivate lung surfactant proteins A and D. J. Biol. Chem. 282, 36808–36819 PubMed

Henriquez O. A., Den Beste K., Hoddeson E. K., Parkos C. A., Nusrat A., and Wise S. K. (2013) House dust mite allergen Der p 1 effects on sinonasal epithelial tight junctions. Int. Forum Allergy Rhinol. 3, 630–635 PubMed PMC

Reubsaet L., Meerding J., Giezeman R., de Kleer I., Arets B., Prakken B., Beekman J., and van Wijk F. (2013) Der p 1-induced CD4+ FOXP3+ GATA3+ T cells have suppressive properties and contribute to the polarization of the TH2-associated response. J. Allergy Clin. Immunol. 132, 1440–1444 PubMed

Yi M. H., Kim H. P., Jeong K. Y., Kim C. R., Kim T. Y., and Yong T. S. (2015) House dust mite allergen Der f 1 induces IL-8 in human basophilic cells via ROS-ERK and p38 signal pathways. Cytokine 75, 356–364 PubMed

Comoy E. E., Pestel J., Duez C., Stewart G. A., Vendeville C., Fournier C., Finkelman F., Capron A., and Thyphronitis G. (1998) The house dust mite allergen, Dermatophagoides pteronyssinus, promotes type 2 responses by modulating the balance between IL-4 and IFN-γ. J. Immunol. 160, 2456–2462 PubMed

Gough L., Sewell H. F., and Shakib F. (2001) The proteolytic activity of the major dust mite allergen Der p 1 enhances the IgE antibody response to a bystander antigen. Clin. Exp. Allergy 31, 1594–1598 PubMed

Chapman M. D., Wünschmann S., and Pomés A. (2007) Proteases as Th2 adjuvants. Curr. Allergy Asthma Rep. 7, 363–367 PubMed

Cunningham P. T., Elliot C. E., Lenzo J. C., Jarnicki A. G., Larcombe A. N., Zosky G. R., Holt P. G., and Thomas W. R. (2012) Sensitizing and Th2 adjuvant activity of cysteine protease allergens. Int. Arch. Allergy Immunol. 158, 347–358 PubMed

Karplus P. A., and Diederichs K. (2012) Linking crystallographic model and data quality. Science 336, 1030–1033 PubMed PMC

Zobrazit více v PubMed

PDB
1PCI

PDB
1S4V

PDB
1XKG

PDB
2AS8

PDB
3TNX

PDB
5EF4

PDB
5EGW

PDB
7PCK

PDB
9PAP

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...