Structural and Functional Characterization of the Major Allergen Amb a 11 from Short Ragweed Pollen
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27129273
PubMed Central
PMC4933224
DOI
10.1074/jbc.m115.702001
PII: S0021-9258(20)39452-7
Knihovny.cz E-zdroje
- Klíčová slova
- allergen, cysteine protease, immunotherapy, protein processing, ragweed, structure-function,
- MeSH
- alergeny chemie imunologie MeSH
- antigeny rostlinné imunologie MeSH
- cysteinové proteasy chemie imunologie MeSH
- katalytická doména MeSH
- konzervovaná sekvence MeSH
- krystalografie rentgenová MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- myši inbrední BALB C MeSH
- posttranslační úpravy proteinů MeSH
- prekurzory enzymů chemie imunologie MeSH
- proteolýza MeSH
- rostlinné extrakty imunologie MeSH
- rostlinné proteiny chemie imunologie MeSH
- sekvence aminokyselin MeSH
- sezónní alergická rýma imunologie prevence a kontrola MeSH
- vodíková vazba MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alergeny MeSH
- antigeny rostlinné MeSH
- cysteinové proteasy MeSH
- prekurzory enzymů MeSH
- ragweed pollen MeSH Prohlížeč
- rostlinné extrakty MeSH
- rostlinné proteiny MeSH
Allergy to the short ragweed (Ambrosia artemisiifolia) pollen is a major health problem. The ragweed allergen repertoire has been recently expanded with the identification of Amb a 11, a new major allergen belonging to the cysteine protease family. To better characterize Amb a 11, a recombinant proform of the molecule with a preserved active site was produced in Escherichia coli, refolded, and processed in vitro into a mature enzyme. The enzymatic activity is revealed by maturation following an autocatalytic processing resulting in the cleavage of both N- and C-terminal propeptides. The 2.05-Å resolution crystal structure of pro-Amb a 11 shows an overall typical C1A cysteine protease fold with a network of molecular interactions between the N-terminal propeptide and the catalytic triad of the enzyme. The allergenicity of Amb a 11 was confirmed in a murine sensitization model, resulting in airway inflammation, production of serum IgEs, and induction of Th2 immune responses. Of note, inflammatory responses were higher with the mature form, demonstrating that the cysteine protease activity critically contributes to the allergenicity of the molecule. Collectively, our results clearly demonstrate that Amb a 11 is a bona fide cysteine protease exhibiting a strong allergenicity. As such, it should be considered as an important molecule for diagnosis and immunotherapy of ragweed pollen allergy.
From Research and Development Stallergenes Greer 92160 Antony France
the SOLEIL Synchrotron PROXIMA 2A Saint Aubin BP 48 91192 Gif sur Yvette Cedex France
the Vienna Challenge Chamber Allergy Center Vienna West A 1150 Vienna Austria
Zobrazit více v PubMed
Arbes S. J. Jr., Gergen P. J., Elliott L., and Zeldin D. C. (2005) Prevalences of positive skin test responses to 10 common allergens in the US population: results from the third National Health and Nutrition Examination Survey. J. Allergy Clin. Immunol. 116, 377–383 PubMed
D'Amato G., Cecchi L., Bonini S., Nunes C., Annesi-Maesano I., Behrendt H., Liccardi G., Popov T., and van Cauwenberge P. (2007) Allergenic pollen and pollen allergy in Europe. Allergy 62, 976–990 PubMed
Burbach G. J., Heinzerling L. M., Röhnelt C., Bergmann K. C., Behrendt H., Zuberbier T., and GA(2)LEN study (2009) Ragweed sensitization in Europe—GA(2)LEN study suggests increasing prevalence. Allergy 64, 664–665 PubMed
Oswalt M. L., and Marshall G. D. (2008) Ragweed as an example of worldwide allergen expansion. Allergy Asthma Clin. Immunol. 4, 130–135 PubMed PMC
Smith M., Cecchi L., Skjøth C. A., Karrer G., and Šikoparija B. (2013) Common ragweed: a threat to environmental health in Europe. Environ. Int. 61, 115–126 PubMed
Bordas-Le Floch V., Groeme R., Chabre H., Baron-Bodo V., Nony E., Mascarell L., and Moingeon P. (2015) New insights into ragweed pollen allergens. Curr. Allergy Asthma Rep. 15, 63. PubMed
Asero R., Wopfner N., Gruber P., Gadermaier G., and Ferreira F. (2006) Artemisia and Ambrosia hypersensitivity: co-sensitization or co-recognition? Clin. Exp. Allergy 36, 658–665 PubMed
Gadermaier G., Wopfner N., Wallner M., Egger M., Didierlaurent A., Regl G., Aberger F., Lang R., Ferreira F., and Hawranek T. (2008) Array-based profiling of ragweed and mugwort pollen allergens. Allergy 63, 1543–1549 PubMed
Bouley J., Groeme R., Le Mignon M., Jain K., Chabre H., Bordas-Le Floch V., Couret M. N., Bussières L., Lautrette A., Naveau M., Baron-Bodo V., Lombardi V., Mascarell L., Batard T., Nony E., et al. (2015) Identification of the cysteine protease Amb a 11 as a novel major allergen from short ragweed. J. Allergy Clin. Immunol. 136, 1055–1064 PubMed
Bussières L., Bordas-Le Floch V., Bulder I., Chabre H., Nony E., Lautrette A., Berrouet C., Nguefeu Y., Horiot S., Baron-Bodo V., Van Overtvelt L., De Conti A. M., Schlegel A., Maguet N., Mouz N., et al. (2010) Recombinant fusion proteins assembling Der p 1 and Der p 2 allergens from Dermatophagoides pteronyssinus. Int. Arch. Allergy Immunol. 153, 141–151 PubMed
Choudhury D., Roy S., Chakrabarti C., Biswas S., and Dattagupta J. K. (2009) Production and recovery of recombinant propapain with high yield. Phytochemistry 70, 465–472 PubMed
Lees J. G., Smith B. R., Wien F., Miles A. J., and Wallace B. A. (2004) CDtool—an integrated software package for circular dichroism spectroscopic data processing, analysis, and archiving. Anal. Biochem. 332, 285–289 PubMed
van Stokkum I. H., Spoelder H. J., Bloemendal M., van Grondelle R., and Groen F. C. (1990) Estimation of protein secondary structure and error analysis from circular dichroism spectra. Anal. Biochem. 191, 110–118 PubMed
Whitmore L., and Wallace B. A. (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res. 32, W668–W673 PubMed PMC
Kabsch W. (2010) XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 PubMed PMC
Storoni L. C., McCoy A. J., and Read R. J. (2004) Likelihood-enhanced fast rotation functions. Acta Crystallogr. D Biol. Crystallogr. 60, 432–438 PubMed
Than M. E., Helm M., Simpson D. J., Lottspeich F., Huber R., and Gietl C. (2004) The 2.0 Å crystal structure and substrate specificity of the KDEL-tailed cysteine endopeptidase functioning in programmed cell death of Ricinus communis endosperm. J. Mol. Biol. 336, 1103–1116 PubMed
Roy S., Choudhury D., Aich P., Dattagupta J. K., and Biswas S. (2012) The structure of a thermostable mutant of pro-papain reveals its activation mechanism. Acta Crystallogr. D Biol. Crystallogr. 68, 1591–1603 PubMed
Bricogne G., Blanc E., Brandl M., Flensburg C., Keller P., Paciorek W., Roversi P., Sharff A., Smart O. S., Vonrhein C., and Womack T. O. (2011) BUSTER, version 2.1.0, Global Phasing Ltd., Cambridge, UK
Emsley P., and Cowtan K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 PubMed
Razafindratsita A., Saint-Lu N., Mascarell L., Berjont N., Bardon T., Betbeder D., Van Overtvelt L., and Moingeon P. (2007) Improvement of sublingual immunotherapy efficacy with a mucoadhesive allergen formulation. J. Allergy Clin. Immunol. 120, 278–285 PubMed
Novinec M., and Lenarčič B. (2013) Papain-like peptidases: structure, function, and evolution. BioMol Concepts 4, 287–308 PubMed
Meno K., Thorsted P. B., Ipsen H., Kristensen O., Larsen J. N., Spangfort M. D., Gajhede M., and Lund K. (2005) The crystal structure of recombinant proDer p 1, a major house dust mite proteolytic allergen. J. Immunol. 175, 3835–3845 PubMed
de Halleux S., Stura E., VanderElst L., Carlier V., Jacquemin M., and Saint-Remy J. M. (2006) Three-dimensional structure and IgE-binding properties of mature fully active Der p 1, a clinically relevant major allergen. J. Allergy Clin. Immunol. 117, 571–576 PubMed
Kamphuis I. G., Kalk K. H., Swarte M. B., and Drenth J. (1984) Structure of papain refined at 1.65 Å resolution. J. Mol. Biol. 179, 233–256 PubMed
Bordas-Le Floch V., Le Mignon M., Bouley J., Groeme R., Jain K., Baron-Bodo V., Nony E., Mascarell L., and Moingeon P. (2015) Identification of novel short ragweed pollen allergens using combined transcriptomic and immunoproteomic approaches. PLoS One 10, e0136258. PubMed PMC
Gadermaier G., Hauser M., and Ferreira F. (2014) Allergens of weed pollen: an overview on recombinant and natural molecules. Methods 66, 55–66 PubMed
Burtin D., Chabre H., Olagnier B., Didierlaurent A., Couret M. N., Comeau D., Wambre E., Laparra H., Van Overtvelt L., Montandon F., Batard T., Jonval V., Lorphelin A., Merle C., Berrouet C., Parry L., Gomord V., Van Ree R., and Moingeon P. (2009) Production of native and modified recombinant Der p 1 molecules in tobacco plants. Clin. Exp. Allergy 39, 760–770 PubMed
Brömme D., Nallaseth F. S., and Turk B. (2004) Production and activation of recombinant papain-like cysteine proteases. Methods 32, 199–206 PubMed
Turk V., Stoka V., Vasiljeva O., Renko M., Sun T., Turk B., and Turk D. (2012) Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim. Biophys. Acta 1824, 68–88 PubMed PMC
Gunawan H., Takai T., Ikeda S., Okumura K., and Ogawa H. (2008) Protease activity of allergenic pollen of cedar, cypress, juniper, birch and ragweed. Allergol. Int. 57, 83–91 PubMed
Gunawan H., Takai T., Kamijo S., Wang X. L., Ikeda S., Okumura K., and Ogawa H. (2008) Characterization of proteases, proteins, and eicosanoid-like substances in soluble extracts from allergenic pollen grains. Int. Arch. Allergy Immunol. 147, 276–288 PubMed
Wiederanders B. (2003) Structure-function relationships in class CA1 cysteine peptidase propeptides. Acta Biochim. Pol. 50, 691–713 PubMed
Kaulmann G., Palm G. J., Schilling K., Hilgenfeld R., and Wiederanders B. (2006) The crystal structure of a Cys25 → Ala mutant of human procathepsin S elucidates enzyme-prosequence interactions. Protein Sci. 15, 2619–2629 PubMed PMC
Stack C. M., Caffrey C. R., Donnelly S. M., Seshaadri A., Lowther J., Tort J. F., Collins P. R., Robinson M. W., Xu W., McKerrow J. H., Craik C. S., Geiger S. R., Marion R., Brinen L. S., and Dalton J. P. (2008) Structural and functional relationships in the virulence-associated cathepsin L proteases of the parasitic liver fluke, Fasciola hepatica. J. Biol. Chem. 283, 9896–9908 PubMed PMC
Sivaraman J., Lalumière M., Ménard R., and Cygler M. (1999) Crystal structure of wild-type human procathepsin K. Protein Sci. 8, 283–290 PubMed PMC
Groves M. R., Taylor M. A., Scott M., Cummings N. J., Pickersgill R. W., and Jenkins J. A. (1996) The prosequence of procaricain forms an α-helical domain that prevents access to the substrate-binding cleft. Structure 4, 1193–1203 PubMed
Chevigné A., Barumandzadeh R., Groslambert S., Cloes B., Dehareng D., Filée P., Marx J. C., Frère J. M., Matagne A., Jacquet A., and Galleni M. (2007) Relationship between propeptide pH unfolding and inhibitory ability during ProDer p 1 activation mechanism. J. Mol. Biol. 374, 170–185 PubMed
Demidyuk I. V., Shubin A. V., Gasanov E. V., and Kostrov S. V. (2010) Propeptides as modulators of functional activity of proteases. Biomol. Concepts 1, 305–322 PubMed
Eder J., and Fersht A. R. (1995) Pro-sequence-assisted protein folding. Mol. Microbiol. 16, 609–614 PubMed
Wiederanders B., Kaulmann G., and Schilling K. (2003) Functions of propeptide parts in cysteine proteases. Curr. Protein Pept. Sci. 4, 309–326 PubMed
Nandana V., Singh S., Singh A. N., and Dubey V. K. (2014) Procerain B, a cysteine protease from Calotropis procera, requires N-terminus pro-region for activity: cDNA cloning and expression with pro-sequence. Protein Expr. Purif. 103, 16–22 PubMed
Paul W., Amiss J., Try R., Praekelt U., Scott R., and Smith H. (1995) Correct processing of the kiwifruit protease actinidin in transgenic tobacco requires the presence of the C-terminal propeptide. Plant Physiol. 108, 261–268 PubMed PMC
Dutta S., Choudhury D., Dattagupta J. K., and Biswas S. (2011) C-terminal extension of a plant cysteine protease modulates proteolytic activity through a partial inhibitory mechanism. FEBS J. 278, 3012–3024 PubMed
Schmid M., Simpson D., Kalousek F., and Gietl C. (1998) A cysteine endopeptidase with a C-terminal KDEL motif isolated from castor bean endosperm is a marker enzyme for the ricinosome, a putative lytic compartment. Planta 206, 466–475 PubMed
Okamoto T., Minamikawa T., Edward G., Vakharia V., Herman E., and Okomoto T. (1999) Posttranslational removal of the carboxyl-terminal KDEL of the cysteine protease SH-EP occurs prior to maturation of the enzyme. J. Biol. Chem. 274, 11390–11398 PubMed
Deb R., Shakib F., Reid K., and Clark H. (2007) Major house dust mite allergens Dermatophagoides pteronyssinus 1 and Dermatophagoides farinae 1 degrade and inactivate lung surfactant proteins A and D. J. Biol. Chem. 282, 36808–36819 PubMed
Henriquez O. A., Den Beste K., Hoddeson E. K., Parkos C. A., Nusrat A., and Wise S. K. (2013) House dust mite allergen Der p 1 effects on sinonasal epithelial tight junctions. Int. Forum Allergy Rhinol. 3, 630–635 PubMed PMC
Reubsaet L., Meerding J., Giezeman R., de Kleer I., Arets B., Prakken B., Beekman J., and van Wijk F. (2013) Der p 1-induced CD4+ FOXP3+ GATA3+ T cells have suppressive properties and contribute to the polarization of the TH2-associated response. J. Allergy Clin. Immunol. 132, 1440–1444 PubMed
Yi M. H., Kim H. P., Jeong K. Y., Kim C. R., Kim T. Y., and Yong T. S. (2015) House dust mite allergen Der f 1 induces IL-8 in human basophilic cells via ROS-ERK and p38 signal pathways. Cytokine 75, 356–364 PubMed
Comoy E. E., Pestel J., Duez C., Stewart G. A., Vendeville C., Fournier C., Finkelman F., Capron A., and Thyphronitis G. (1998) The house dust mite allergen, Dermatophagoides pteronyssinus, promotes type 2 responses by modulating the balance between IL-4 and IFN-γ. J. Immunol. 160, 2456–2462 PubMed
Gough L., Sewell H. F., and Shakib F. (2001) The proteolytic activity of the major dust mite allergen Der p 1 enhances the IgE antibody response to a bystander antigen. Clin. Exp. Allergy 31, 1594–1598 PubMed
Chapman M. D., Wünschmann S., and Pomés A. (2007) Proteases as Th2 adjuvants. Curr. Allergy Asthma Rep. 7, 363–367 PubMed
Cunningham P. T., Elliot C. E., Lenzo J. C., Jarnicki A. G., Larcombe A. N., Zosky G. R., Holt P. G., and Thomas W. R. (2012) Sensitizing and Th2 adjuvant activity of cysteine protease allergens. Int. Arch. Allergy Immunol. 158, 347–358 PubMed
Karplus P. A., and Diederichs K. (2012) Linking crystallographic model and data quality. Science 336, 1030–1033 PubMed PMC
PDB
1PCI
PDB
1S4V
PDB
1XKG
PDB
2AS8
PDB
3TNX
PDB
5EF4
PDB
5EGW
PDB
7PCK
PDB
9PAP