Smaller Absolute Quantities but Greater Relative Densities of Microvessels Are Associated with Cerebellar Degeneration in Lurcher Mice

. 2016 ; 10 () : 35. [epub] 20160419

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27147979

Degenerative affections of nerve tissues are often accompanied by changes of vascularization. In this regard, not much is known about hereditary cerebellar degeneration. In this study, we compared the vascularity of the individual cerebellar components and the mesencephalon of 3-month-old wild type mice (n = 5) and Lurcher mutant mice, which represent a model of hereditary olivocerebellar degeneration (n = 5). Paraformaldehyde-fixed brains were processed into 18-μm thick serial sections with random orientation. Microvessels were visualized using polyclonal rabbit anti-laminin antibodies. Then, the stacks comprised of three 5-μm thick optical sections were recorded using systematic uniform random sampling. Stereological assessment was conducted based on photo-documentation. We found that each of the cerebellar components has its own features of vascularity. The greatest number and length of vessels were found in the granular layer; the number of vessels was lower in the molecular layer, and the lowest number of vessels was observed in the cerebellar nuclei corresponding with their low volume. Nevertheless, the nuclei had the greatest density of blood vessels. The reduction of cerebellum volume in the Lurcher mice was accompanied by a reduction in vascularization in the individual cerebellar components, mainly in the cortex. Moreover, despite the lower density of microvessels in the Lurcher mice compared with the wild type mice, the relative density of microvessels in the cerebellar cortex and nuclei was greater in Lurcher mice. The complete primary morphometric data, in the form of continuous variables, is included as a supplement. Mapping of the cerebellar and midbrain microvessels has explanatory potential for studies using mouse models of neurodegeneration.

Zobrazit více v PubMed

Araki K., Meguro H., Kushiya E., Takayama C., Inoue Y., Mishina M. (1993). Selective expression of the glutamate receptor channel delta 2 subunit in cerebellar Purkinje cells Biochem. Biophys. Res. Commun. 197, 1267–1276. 10.1006/bbrc.1993.2614 PubMed DOI

Babuska V., Houdek Z., Tuma J., Purkartova Z., Tumova J., Kralickova M., et al. . (2015). Transplantation of embryonic cerebellar grafts improves gait parameters in ataxic Lurcher mice. Cerebellum 14, 632–641. 10.1007/s12311-015-0656-x PubMed DOI

Baurle J., Kranda K., Frischmuth S. (2006). On the variety of cell death pathways in the Lurcher mutant mouse. Acta Neuropathol. 112, 691–702. 10.1007/s00401-006-0137-x PubMed DOI

Björklund A., Lindvall O. (2000). Cell replacement therapies for central nervous system disorders. Nature Neurosci. 3, 537–544. 10.1038/75705 PubMed DOI

Boyce R. W., Dorph-Petersen K., Lyck L., Gundersen H. J. (2010). Design-based stereology: introduction to basic concepts and practical approaches for estimation of cell number. Toxicol. Pathol. 38, 1011–1025. 10.1177/0192623310385140 PubMed DOI

Burger I. M., Siclari F., Gregg L., Gailloud P. (2007). Bilateral segmental agenesis of the vertebrobasilar junction: developmental and angiographic anatomy. AJNR Am. J. Neuroradiol. 28, 2017–2022. 10.3174/ajnr.A0719 PubMed DOI PMC

Burke M., Zangenehpour S., Mouton P. R., Ptito M. (2009). Knowing what counts: unbiased stereology in the non-human primate brain. J. Vis. Exp. 27:1262. 10.3791/1262 PubMed DOI PMC

Butts T., Green M., Wingate R. (2014). Development of the cerebellum: simple steps to make a ‘little brain’. Development 141, 4031–4041. 10.1242/dev.106559 PubMed DOI

Caddy K. W., Biscoe T. J. (1979). Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Philos. Trans. R. Soc. Lond. B Biol. Sci. 287, 167–201. 10.1098/rstb.1979.0055 PubMed DOI

Caddy K. W., Herrup K. (1990). Studies of the dendritic tree of wild-type cerebellar Purkinje cells in lurcher chimeric mice. J. Comp. Neurol. 297, 121–131. 10.1002/cne.902970109 PubMed DOI

Caddy K. W., Herrup K. (1991). The fine structure of the Purkinje cell and its afferents in lurcher chimeric mice. J. Comp. Neurol. 305, 421–434. 10.1002/cne.903050306 PubMed DOI

Caddy K. W., Vozeh F. (1997). The effect of 3-acetylpyridine on inferior olivary neuron degeneration in Lurcher mutant and wild-type mice. Eur. J. Pharmacol. 330 139–142. 10.1016/S0014-2999(97)01030-3 PubMed DOI

Carletti B., Williams I. M., Leto K., Nakajima K., Magrassi L., Rossi F. (2008). Time constraints and positional cues in the developing cerebellum regulate Purkinje cell placement in the cortical architecture. Dev. Biol. 317, 147–160. 10.1016/j.ydbio.2008.02.005 PubMed DOI

Cassot F., Lauwers F., Fouard C., Prohaska S., Lauwers-Cances V. (2006). A novel three-dimensional computer-assisted method for a quantitative study of microvascular networks of the human cerebral cortex. Microcirculation 13, 1–18. 10.1080/10739680500383407 PubMed DOI

Cendelin J. (2014). From mice to men: lessons from mutant ataxic mice. Cereb. Ataxias 1:4. 10.1186/2053-8871-1-4 PubMed DOI PMC

Cendelin J. (2016). Transplantation and stem cell therapy for cerebellar degenerations. Cerebellum 15, 48–50. 10.1007/s12311-015-0697-1 PubMed DOI

Cendelin J., Korelusova I., Vozeh F. (2009). A preliminary study of solid embryonic cerebellar graft survival in adult B6CBA Lurcher mutant and wild type mice. Anat. Rec. (Hoboken) 292, 1986–1992. 10.1002/ar.20967 PubMed DOI

Cendelin J., Tuma J., Korelusova I., Vozeh F. (2014). The effect of genetic background on behavioral manifestation of Grid2(Lc) mutation. Behav. Brain Res. 271, 218–227. 10.1016/j.bbr.2014.06.023 PubMed DOI

Cheng S. S., Heintz N. (1997). Massive loss of mid- and hindbrain neurons during embryonic development of homozygous lurcher mice. J. Neurosci. 17, 2400–2407. PubMed PMC

Delgado-García J. M., Gruart A. (2002). The role of interpositus nucleus in eyelid conditioned responses. Cerebellum 4, 289–308. 10.1080/147342202320883597 PubMed DOI

Doughty M. L., De Jager P. L., Korsmeyer S. J., Heintz N. (2000). Neurodegeneration in Lurcher mice occurs via multiple cell death pathways. J. Neurosci. 20, 3687–3694. PubMed PMC

Dusart I., Guenet J. L., Sotelo C. (2006). Purkinje cell death: Differences between developmental cell death and neurodegenerative death in mutant mice. Cerebellum 5, 163–173. 10.1080/14734220600699373 PubMed DOI

Eržen I., Janáček J., Kubínová L. (2011). Characterization of the capillary network in skeletal muscles from 3D data. Physiol. Res. 60, 1–13. PubMed

Fink A. J., Englund C., Daza R. A. M., Pham D., Lau C., Nivison M., et al. . (2006). Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J. Neurosci. 26, 3066–3076. 10.1523/JNEUROSCI.5203-05.2006 PubMed DOI PMC

Fortier P. A., Smith A. M., Rossignol S. (1987). Locomotor deficits in the mutant mouse, Lurcher. Exp. Brain Res. 2, 271–286. 10.1007/bf00243304 PubMed DOI

Franklin K. B. J., Paxinos G. (2008). The Mouse Brain in Stereotaxic Coordinates, 3rd Edn. Sydney: Elsevier Inc.

Gruart A., Pastor A. M., Armengol J. A., Delgado-Garcia J. M. (1997). Involvement of cerebellar cortex and nuclei in the genesis and control of unconditioned and conditioned eyelid motor responses. Prog. Brain Res. 114, 511–528. 10.1016/S0079-6123(08)63383-X PubMed DOI

Gundersen H. J. G. (1986). Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J. Microsc. 143, 3–45. 10.1111/j.1365-2818.1986.tb02764.x PubMed DOI

Gundersen H. J., Jensen E. B. (1987). The efficiency of systematic sampling in stereology and its prediction. J. Microsc. 147, 229–263. 10.1111/j.1365-2818.1987.tb02837.x PubMed DOI

Hall C. N., Reynell C., Gesslein B., Hamilton N. B., Mishra A., Sutherland B. A., et al. . (2014). Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508, 55–60. 10.1038/nature13165 PubMed DOI PMC

Heckroth J. A. (1994a). Quantitative morphological analysis of the cerebellar nuclei in normal and lurcher mutant mice. I. Morphology and cell number. J. Comp. Neurol. 343, 173–182. 10.1002/cne.903430113 PubMed DOI

Heckroth J. A. (1994b). A quantitative morphological analysis of the cerebellar nuclei in normal and lurcher mutant mice. II. Volumetric changes in cytological components. J. Comp. Neurol. 343, 183–192. 10.1002/cne.903430114 PubMed DOI

Heckroth J. A., Eisenman L. M. (1991). Olivary morphology and olivocerebellar topography in adult lurcher mutant mice. J. Comp. Neurol. 312, 641–651. 10.1002/cne.903120413 PubMed DOI

Hilber P., Lorivel T., Delarue C., Caston J. (2004). Stress and anxious-related behaviors in Lurcher mutant mice. Brain Res. 1003, 108–112. 10.1016/j.brainres.2004.01.008 PubMed DOI

Howard C. V., Reed M. G. (1998). Unbiased Stereology: Three Dimensional Measurement in Microscopy. New York, NY: Springer-Verlag. Royal Microscopical Society, Microscopy Handbook Series No. 41.

Huang C. X., Qiu X., Wang S., Wu H., Xia L., Li C., et al. . (2013). Exercise-induced changes of the capillaries in the cortex of middle-aged rats. Neuroscience 233, 139–145. 10.1016/j.neuroscience.2012.12.046 PubMed DOI

Isaacs K. R., Anderson B. J., Alcantara A. A., Black J. E., Greenough W. T. (1992). Exercise and the brain: angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J. Cereb. Blood Flow Metab. 12, 110–119. 10.1038/jcbfm.1992.14 PubMed DOI

Jiménez-Díaz L., Navarro-López Jde D., Gruart A., Delgado-García J. M. (2004). Role of cerebellar interpositus nucleus in the genesis and control of reflex and conditioned eyelid responses. J. Neurosci. 24, 9138–9145. 10.1523/JNEUROSCI.2025-04.2004 PubMed DOI PMC

Jones J., Jaramillo-Merchan J., Bueno C., Pastor D., Viso-Leon M., Martinez S. (2010). Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol. Dis. 40, 415–423. 10.1016/j.nbd.2010.07.001 PubMed DOI

Keep M., Sotelo C. (1992). New insight on the factors orienting the axonal outgrowth of grafted Purkinje cells in the pcd cerebellum. Dev. Neurosci. 14, 153–165. 10.1159/000111659 PubMed DOI

Kleim J. A., Cooper N. R., VandenBerg P. M. (2002). Exercise induces angiogenesis but does not alter movement representations within rat motor cortex. Brain Res. 934, 1–6. 10.1016/S0006-8993(02)02239-4 PubMed DOI

Kleiter N., Lametschwandtner A. (1995). Microvascularization of the cerebellum in the turtle, Pseudemys scripta elegans (Reptilia). A scanning electron microscope study of microvascular corrosion casts, including stereological measurements‘. Anat. Embryol. (Berl). 191, 145–152. 10.1007/bf00186786 PubMed DOI

Kolinko Y., Krakorova K., Cendelin J., Tonar Z., Kralickova M. (2015). Microcirculation of the brain: morphological assessment in degenerative diseases and restoration processes. Rev. Neurosci. 26, 75–93. 10.1515/revneuro-2014-0049 PubMed DOI

Lalonde R., Lamarre Y., Smith A. M. (1988). Does the mutant mouse lurcher have deficits in spatially oriented behaviours? Brain Res. 1, 24–30. PubMed

Løkkegaard A., Nyengaard J. R., West M. J. (2001). Stereological estimates of number and length of capillaries in subdivisions of the human hippocampal region. Hippocampus 11, 726–740. 10.1002/hipo.1088 PubMed DOI

Lomeli H., Sprengel R., Laurie D. J., Köhr G., Herb A., Seeburg P. H., et al. . (1993). The rat delta-1 and delta-2 subunits extend the excitatory amino acid receptor family. FEBS Lett. 315, 318–322. 10.1016/0014-5793(93)81186-4 PubMed DOI

Lorivel T., Roy V., Hilber P. (2014). Fear-related behaviors in Lurcher mutant mice exposed to a predator. Genes Brain Behav. 13, 794–801. 10.1111/gbb.12173 PubMed DOI

Lu W., Tsirka S. E. (2002). Partial rescue of neural apoptosis in the Lurcher mutant mouse through elimination of tissue plasminogen activator. Development 129, 2043–2050. PubMed

Machold R., Fishell G. (2005). Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48, 17–24. 10.1016/j.neuron.2005.08.028 PubMed DOI

Manto M. U. (2005). The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum 4, 2–6. 10.1080/14734220510007914 PubMed DOI

Mattfeldt T., Mall G., Gharehbaghi H., Möller P. (1990). Estimation of surface area and length with the orientator. J. Microsc. 159, 301–317. 10.1111/j.1365-2818.1990.tb03036.x PubMed DOI

Mayhew M. J. (2005). Computer-aided bracket placement for indirect bonding. J. Clin. Orthod. 39, 653–660. PubMed

Millet S., Bloch-Gallego E., Simeone A., Alvarado-Mallart R. M. (1996). The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridisation and chick/quail homotopic grafts. Development 122, 3785–3797. PubMed

Mühlfeld C., Schipke J., Schmidt A., Post H., Pieske B., Sedej S. (2013). Hypoinnervation is an early event in experimental myocardial remodelling induced by pressure overload. J. Anat. 222, 634–644. 10.1111/joa.12044 PubMed DOI PMC

Nishiyama J., Yuzaki M. (2010). Excitotoxicity and autophagy: lurcher may not be a model of “autophagic cell death”. Autophagy 6, 568–570. 10.4161/auto.6.4.11951 PubMed DOI

Norman D. J., Feng L., Cheng S. S., Gubbay J., Chan E., Heintz N. (1995). The lurcher gene induces apoptotic death in cerebellar Purkinje cells. Development 121, 1183–1193. PubMed

Nyengaard J. R., Gundersen H. J. (1991). The isector: a simple and direct method for generating isotropic, uniform random sections from small specimens. J. Microsc. 165, 427–431. 10.1111/j.1365-2818.1992.tb01497.x DOI

Nyengaard J. R., Gundersen H. J. G. (2006). Sampling for stereology in lungs. Eur. Respir. Rev. 15, 107–114. 10.1183/09059180.00010101 DOI

Phillips R. J. S. (1960). ‘Lurcher’, a new gene in linkage group XI of the house mouse. J. Genet. 57, 35–42. 10.1007/BF02985337 DOI

Porras-Garcia E., Cendelin J., Dominguez-del-Toro E., Vozeh F., Delgado-Garcia J. M. (2005). Purkinje cell loss affects differentially the execution, acquisition and prepulse inhibition of skeletal and facial motor responses in Lurcher mice. Eur. J. Neurosci. 21, 979–988. 10.1111/j.1460-9568.2005.03940.x PubMed DOI

Porras-Garcia E., Sanchez-Campusano R., Martinez-Vargas D., Dominguez-del-Toro E., Cendelin J., Vozeh F., et al. . (2010). Behavioral characteristics, associative learning capabilities, and dynamic association mapping in an animal model of cerebellar degeneration. J. Neurophysiol. 104, 346–365. 10.1152/jn.00180.2010 PubMed DOI

Porras-García M. E., Ruiz R., Pérez-Villegas E. M., Armengol J. Á. (2013). Motor learning of mice lacking cerebellar Purkinje cells. Front. Neuroanat. 7:4. 10.3389/fnana.2013.00004 PubMed DOI PMC

Resibois A., Cuvelier L., Goffinet A. M. (1997). Abnormalities in the cerebellum and brainstem in homozygous lurcher mice. Neuroscience 80, 175–190. 10.1016/S0306-4522(97)00009-2 PubMed DOI

Rhyu I. J., Bytheway J. A., Kohler S. J., Lange H., Lee K. J., Boklewski J., et al. . (2010). Effects of aerobic exercise training on cognitive function and cortical vascularity in monkeys. Neuroscience 167, 1239–1248. 10.1016/j.neuroscience.2010.03.003 PubMed DOI PMC

Ruff C. A., Fehlings M. G. (2010). Neural stem cells in regenerative medicine: bridging the gap. Panminerva Med. 52, 125–147. PubMed

Sánchez-Campusano R., Gruart A., Fernández-Mas R., Delgado-García J. M. (2012). An agonist-antagonist cerebellar nuclear system controlling eyelid kinematics during motor learning. Front. Neuroanat. 6:8. 10.3389/fnana.2012.00008 PubMed DOI PMC

Selimi F., Doughty M., Delhaye-Bouchaud N., Mariani J. (2000). Target-related and intrinsic neuronal death in Lurcher mutant mice are both mediated by caspase-3 activation. J. Neurosci. 20, 992–1000. PubMed PMC

Smith C. S., Guttman L. (1953). Measurement of internal boundaries in three dimensional structures by random sectioning. Trans. AIME 197, 81–92.

Sotelo C., Alvarado-Mallart R. M. (1987). Reconstruction of the defective cerebellar circuitry in adult Purkinje cell degeneration mutant mice by Purkinje cell replacement through transplantation of solid embryonic implants. Neuroscience 20, 1–22. 10.1016/0306-4522(87)90002-9 PubMed DOI

Sterio D. C. (1984). The unbiased estimation of number and sizes of arbitrary particles using the disector. J. Microsc. 134, 127–136. 10.1111/j.1365-2818.1984.tb02501.x PubMed DOI

Sultan F., König T., Möck M., Thier P. (2002). Quantitative organization of neurotransmitters in the deep cerebellar nuclei of the Lurcher mutant. J. Comp. Neurol. 452, 311–323. 10.1002/cne.10365 PubMed DOI

Swain R. A., Harris A. B., Wiener E. C., Dutka M. V., Morris H. D., Theien B. E., et al. . (2003). Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience 117, 1037–1046. 10.1016/S0306-4522(02)00664-4 PubMed DOI

Takayama C., Nakagawa S., Watanabe M., Mishina M., Inoue Y. (1995). Light- and electron-microscopic localization of the glutamate receptor channel delta 2 subunit in the mouse Purkinje cell. Neurosci. Lett. 188, 89–92. 10.1016/0304-3940(95)11403-J PubMed DOI

Tata D. A., Anderson B. J. (2002). A new method for the investigation of capillary structure. J. Neurosci. Methods 113, 199–206. 10.1016/S0165-0270(01)00494-0 PubMed DOI

Tonar Z., Kochová P., Cimrman R., Witter K., Janáček J., Rohan V. (2011). Microstructure oriented modelling of hierarchically perfused porous media for cerebral blood flow evaluation. Key Eng. Mater. 465, 286–289. 10.4028/www.scientific.net/KEM.465.286 DOI

Tuma J., Kolinko Y., Vozeh F., Cendelin J. (2015). Mutation-related differences in exploratory, spatial, and depressive-like behavior in pcd and Lurcher cerebellar mutant mice. Front. Behav. Neurosci. 9:116. 10.3389/fnbeh.2015.00116 PubMed DOI PMC

van Raaij M. E., Lindvere L., Dorr A., He J., Sahota B., Foster F. S., et al. . (2012). Quantification of blood flow and volume in arterioles and venules of the rat cerebral cortex using functional micro-ultrasound. Neuroimage 63, 1030–1037. 10.1016/j.neuroimage.2012.07.054 PubMed DOI

Vernet-der Garabedian B., Derer P., Bailly Y., Mariani J. (2013). Innate immunity in the Grid2Lc/+ mouse model of cerebellar neurodegeneration: glial CD95/CD95L plays a non-apoptotic role in persistent neuron loss-associated inflammatory reactions in the cerebellum. J. Neuroinflammation 10:65. 10.1186/1742-2094-10-65 PubMed DOI PMC

Vernet-der Garabedian B., Lemaigre-Dubreuil Y., Delhaye-Bouchaud N., Mariani J. (1998). Abnormal IL-1beta cytokine expression in the cerebellum of the ataxic mutant mice staggerer and lurcher. Brain Res. Mol. Brain Res. 62, 224–227. 10.1016/S0169-328X(98)00268-X PubMed DOI

Wang Q. J., Ding Y., Kohtz D. S., Mizushima N., Cristea I. M., Rout M. P., et al. . (2006). Induction of autophagy in axonal dystrophy and degeneration. J. Neurosci. 26, 8057–8068. 10.1523/JNEUROSCI.2261-06.2006 PubMed DOI PMC

West M. J., Slomianka L., d Gundersen H. J. G. (1991). Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat. Rec. 231, 482–497. 10.1002/ar.1092310411 PubMed DOI

Wetts R., Herrup K. (1982a). Cerebellar Purkinje cells are descended from a small number of progenitors committed during early development: quantitative analysis of lurcher chimeric mice. J. Neurosci. 2, 1494–1498. PubMed PMC

Wetts R., Herrup K. (1982b). Interaction of granule, Purkinje and inferior olivary neurons in lurcher chimeric mice. II. Granule cell death. Brain Res. 250, 358–362. 10.1016/0006-8993(82)90431-0 PubMed DOI

Wetts R., Herrup K. (1983). Direct correlation between Purkinje and granule cell number in the cerebella of lurcher chimeras and wild-type mice. Brain Res. 312, 41–47. 10.1016/0165-3806(83)90119-0 PubMed DOI

Wullner U., Loschmann P. A., Weller M., Klockgether T. (1995). Apoptotic cell death in the cerebellum of mutant weaver and lurcher mice. Neurosci. Lett. 200, 109–112. 10.1016/0304-3940(95)12090-Q PubMed DOI

Yue Z., Horton A., Bravin M., DeJager P. L., Selimi F., Heintz N. (2002). A novel protein complex linking the δ2 glutamate receptor and autophagy: implications for neurodegeneration in Lurcher mice. Neuron 35, 921–933. 10.1016/S0896-6273(02)00861-9 PubMed DOI

Zanjani H. S., Lohof A. M., McFarland R., Vogel M. W., Mariani J. (2013). Enhanced survival of wild-type and Lurcher Purkinje cells in vitro following inhibition of conventional PKCs or stress-activated MAP kinase pathways. Cerebellum 12, 377–389. 10.1007/s12311-012-0427-x PubMed DOI PMC

Zanjani S. H., Selimi F., Vogel M. W., Haeberle A. M., Boeuf J., Mariani J., et al. . (2006). Survival of interneurons and parallel fiber synapses in a cerebellar cortex deprived of Purkinje cells: studies in the double mutant mouse Grid2Lc/-;Bax-/-. J. Comp. Neurol. 497, 622–635. 10.1002/cne.21017 PubMed DOI

Zuo J., De Jager P. L., Takahashi K. A., Jiang W., Linden D. J., Heintz N. (1997). Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature 388, 769–773. 10.1038/42009 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...