FoxP1 marks medium spiny neurons from precursors to maturity and is required for their differentiation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Medical Research Council - United Kingdom
PubMed
27154297
PubMed Central
PMC4920670
DOI
10.1016/j.expneurol.2016.05.002
PII: S0014-4886(16)30112-1
Knihovny.cz E-zdroje
- Klíčová slova
- DARPP-32, FoxP1, Huntington's disease, Medium spiny neurons, Neural transplantation,
- MeSH
- buněčná diferenciace fyziologie MeSH
- corpus striatum * cytologie embryologie růst a vývoj MeSH
- dopaminem a cAMP regulovaný fosfoprotein 32 metabolismus MeSH
- embryo savčí MeSH
- endodeoxyribonukleasy MeSH
- forkhead transkripční faktory genetika metabolismus MeSH
- jaderné proteiny metabolismus MeSH
- kultivované buňky MeSH
- myši knockoutované MeSH
- myši MeSH
- neparametrická statistika MeSH
- nervové kmenové buňky fyziologie transplantace MeSH
- neurony cytologie metabolismus MeSH
- novorozená zvířata MeSH
- plod cytologie MeSH
- proteiny nervové tkáně metabolismus MeSH
- represorové proteiny genetika metabolismus MeSH
- techniky in vitro MeSH
- transportní proteiny metabolismus MeSH
- vývojová regulace genové exprese fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dopaminem a cAMP regulovaný fosfoprotein 32 MeSH
- endodeoxyribonukleasy MeSH
- forkhead transkripční faktory MeSH
- FOXP1 protein, human MeSH Prohlížeč
- jaderné proteiny MeSH
- proteiny nervové tkáně MeSH
- RBBP8 protein, human MeSH Prohlížeč
- represorové proteiny MeSH
- transportní proteiny MeSH
Identifying the steps involved in striatal development is important both for understanding the striatum in health and disease, and for generating protocols to differentiate striatal neurons for regenerative medicine. The most prominent neuronal subtype in the adult striatum is the medium spiny projection neuron (MSN), which constitutes more than 85% of all striatal neurons and classically expresses DARPP-32. Through a microarray study of genes expressed in the whole ganglionic eminence (WGE: the developing striatum) in the mouse, we identified the gene encoding the transcription factor Forkhead box protein P1 (FoxP1) as the most highly up-regulated gene, thus providing unbiased evidence for the association of FoxP1 with MSN development. We also describe the expression of FoxP1 in the human fetal brain over equivalent gestational stages. FoxP1 expression persisted through into adulthood in the mouse brain, where it co-localised with all striatal DARPP-32 positive projection neurons and a small population of DARPP-32 negative cells. There was no co-localisation of FoxP1 with any interneuron markers. FoxP1 was detectable in primary fetal striatal cells following dissection, culture, and transplantation into the adult lesioned striatum, demonstrating its utility as an MSN marker for transplantation studies. Furthermore, DARPP-32 expression was absent from FoxP1 knock-out mouse WGE differentiated in vitro, suggesting that FoxP1 is important for the development of DARPP-32-positive MSNs. In summary, we show that FoxP1 labels MSN precursors prior to the expression of DARPP-32 during normal development, and in addition suggest that FoxP1 labels a sub-population of MSNs that are not co-labelled by DARPP-32. We demonstrate the utility of FoxP1 to label MSNs in vitro and following neural transplantation, and show that FoxP1 is required for DARPP-32 positive MSN differentiation in vitro.
Zobrazit více v PubMed
Arber C., Precious S.V., Cambray S., Risner-Janiczek J.R., Kelly C., Noakes Z., Fjodorova M., Heuer A., Ungless M.A., Rodriguez T.A., Rosser A.E., Dunnett S.B., Li M. Activin A directs striatal projection neuron differentiation of human pluripotent stem cells. Development. 2015;142:1375–1386. PubMed PMC
Arlotta P., Molyneaux B.J., Chen J., Inoue J., Kominami R., Macklis J.D. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron. 2005;45:207–221. PubMed
Arlotta P., Molyneaux B.J., Jabaudon D., Yoshida Y., Macklis J.D. Ctip2 controls the differentiation of medium spiny neurons and the establishment of the cellular architecture of the striatum. J. Neurosci. 2008;28:622–632. PubMed PMC
Aubry L., Bugi A., Lefort N., Rousseau F., Peschanski M., Perrier A.L. Striatal progenitors derived from human ES cells mature into DARPP32 neurons in vitro and in quinolinic acid-lesioned rats. Proc. Natl. Acad. Sci. U. S. A. 2008;105:16707–16712. PubMed PMC
Beal M.F., Kowall N.W., Ellison D.W., Mazurek M.F., Swartz K.J., Martin J.B. Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature. 1986;321:168–171. PubMed
Carri A.D., Onorati M., Lelos M.J., Castiglioni V., Faedo A., Menon R., Camnasio S., Vuono R., Spaiardi P., Talpo F., Toselli M., Martino G., Barker R.A., Dunnett S.B., Biella G., Cattaneo E. Developmentally coordinated extrinsic signals drive human pluripotent stem cell differentiation toward authentic DARPP-32 + medium-sized spiny neurons. Development. 2013;140:301–312. PubMed
Davies S.W., Roberts P.J. No evidence for preservation of somatostatin-containing neurons after intrastriatal injections of quinolinic acid. Nature. 1987;327:326–329. PubMed
Davies S.W., Roberts P.J. Sparing of cholinergic neurons following quinolinic acid lesions of the rat striatum. Neuroscience. 1988;26:387–393. PubMed
Deacon T.W., Pakzaban P., Isacson O. The lateral ganglionic eminence is the origin of cells committed to striatal phenotypes: neural transplantation and developmental evidence. Brain Res. 1994;668:211–219. PubMed
Dunnett S.B., Bjorklund A., Oxford University P . 1992. Neural Transplantation a Practical Approach.
Ehrlich M.E., Rosen N.L., Kurihara T., Shalaby I.A., Greengard P. DARPP-32 development in the caudate nucleus is independent of afferent input from the substantia nigra. Brain Res. Dev. Brain Res. 1990;54:257–263. PubMed
Evans A.E., Kelly C.M., Precious S.V., Rosser A.E. Molecular regulation of striatal development: a review. Anaesth. Resusc. Intensive Ther. 2012;2012:106529. PubMed PMC
Ferland R.J., Cherry T.J., Preware P.O., Morrisey E.E., Walsh C.A. Characterisation of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain. J. Comp. Neurol. 2003;460:266–279. PubMed
Harper P.S. Saunders Company Ltd.; 1996. Huntington's Disease: W.B.
Hisaoka T., Nakamura Y., Senba E., Morikawa Y. The forkhead transcription factors, Foxp1 and Foxp2, identify different subpopulations of projection neurons in the mouse cerebral cortex. Neuroscience. 2010;166:551–563. PubMed
Kelly C.M., Precious S.V., Penketh R., Amso N., Dunnett S.B., Rosser A.E. Striatal graft projections are influenced by donor cell type and not the immunogenic background. Brain. 2007;130:1317–1329. PubMed
Kelly C.M., Dunnett S.B., Rosser A.E. Medium spiny neurons for transplantation in Huntington's disease. Biochem. Soc. Trans. 2009;37:323–328. PubMed
Kelly C.M., Precious S.V., Torres E.M., Harrison A.W., Williams D., Scherf C., Weyrauch U.M., Lane E.L., Allen N.D., Penketh R., Amso N.N., Kemp P.J., Dunnett S.B., Rosser A.E. Medical terminations of pregnancy: a viable source of tissue for cell replacement therapy for neurodegenerative disorders. Cell Transplant. 2011;20:503–513. PubMed
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. PubMed
Ma L., Hu B., Liu Y., Vermilyea S.C., Liu H., Gao L., Sun Y., Zhang X., Zhang S.C. Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice. Cell Stem Cell. 2012;10:455–464. PubMed PMC
Olsson M., Campbell K., Wictorin K., Bjorklund A. Projection neurons in fetal striatal transplants are predominantly derived from the lateral ganglionic eminence. Neuroscience. 1995;69:1169–1182. PubMed
Precious S.V., Rosser A.E. Producing striatal phenotypes for transplantation in Huntington's disease. Exp. Biol. Med. 2012;237:343–351. PubMed
Rosser A.E., Kelly C.M., Dunnett S.B. Cell transplantation for Huntington's disease: practical and clinical considerations. Future Neurol. 2011;6:45–62.
Schwarcz R., Kohler C. Differential vulnerability of central neurons of the rat to quinolinic acid. Neurosci. Lett. 1983;38:85–90. PubMed
Schwarcz R., Whetsell W.O., Jr., Mangano R.M. Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science. 1983;219:316–318. PubMed
Tamura S., Morikawa Y., Iwanishi H., Hisaoka T., Senba E. Expression pattern of the winged-helix/forkhead transcription factor Foxp1 in the developing central nervous system. Gene Expr. Patterns. 2003;3:193–197. PubMed
Tamura S., Morikawa Y., Iwanishi H., Hisaoka T., Senba E. Foxp1 gene expression in projection neurons of the mouse striatum. Neuroscience. 2004;124:261–267. PubMed
Urban N., Martin-Ibanez R., Herranz C., Esgleas M., Crespo E., Pardo M., Crespo-Enriquez I., Mendez-Gomez H.R., Waclaw R., Chatzi C., Alvarez S., Alvarez R., Duester G., Campbell K., de Lera A.R., Vicario-Abejon C., Martinez S., Alberch J., Canals J.M. Nolz1 promotes striatal neurogenesis through the regulation of retinoic acid signaling. Neural Dev. 2010;5:21. PubMed PMC
van der Kooy D., Fishell G. Neuronal birthdate underlies the development of striatal compartments. Brain Res. 1987;401:155–161. PubMed
Walaas S.I., Greengard P. DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. I. Regional and cellular distribution in the rat brain. J. Neurosci. Off. J. Soc. Neurosci. 1984;4:84–98. PubMed PMC
Wang B., Weidenfeld J., Lu M.M., Maika S., Kuziel W.A., Morrisey E.E., Tucker P.W. Foxp1 regulates cardiac outflow tract, endocardial cushion morphogenesis and myocyte proliferation and maturation. Development. 2004;131:4477–4487. PubMed